As a synthetic functional analog of salicylic acid, 2,6-dichloroisonicotinic acid(INA) is effective in inducing the host disease resistance of a plant against a pathogen. The effects of INA on controlling postharvest ...As a synthetic functional analog of salicylic acid, 2,6-dichloroisonicotinic acid(INA) is effective in inducing the host disease resistance of a plant against a pathogen. The effects of INA on controlling postharvest blue and green molds and anthracnose decay and defense-related enzymes on citrus fruits were investigated, and the ascorbic acid of naturally infected citrus flavedo was also measured. Results showed that 1.0 mmol L^(–1) INA treatments significantly reduced blue and green molds and anthracnose decay development on both wound-inoculated fruit and naturally-infected fruit compared with the control fruit. The treatment effectively enhanced the β-1,3-glucanase(GLU), chitinase(CHI), phenylalanine ammonia-lyase(PAL) and peroxidase(POD) activities and the polyphenol oxidase(PPO) in flavedo. The results presented here suggest that INA might be used as a chemical fungicide substitution to control postharvest diseases in citrus fruits.展开更多
基金supported by the National Natural Science Foundation of China(31772027)the Key Project in Applied Technology of Chongqing Science and Technology Bureau,China(cstc2017shms-xdny80058)。
文摘As a synthetic functional analog of salicylic acid, 2,6-dichloroisonicotinic acid(INA) is effective in inducing the host disease resistance of a plant against a pathogen. The effects of INA on controlling postharvest blue and green molds and anthracnose decay and defense-related enzymes on citrus fruits were investigated, and the ascorbic acid of naturally infected citrus flavedo was also measured. Results showed that 1.0 mmol L^(–1) INA treatments significantly reduced blue and green molds and anthracnose decay development on both wound-inoculated fruit and naturally-infected fruit compared with the control fruit. The treatment effectively enhanced the β-1,3-glucanase(GLU), chitinase(CHI), phenylalanine ammonia-lyase(PAL) and peroxidase(POD) activities and the polyphenol oxidase(PPO) in flavedo. The results presented here suggest that INA might be used as a chemical fungicide substitution to control postharvest diseases in citrus fruits.