Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,prima...Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,primarily stemming from the uncontrolled activity of the system.Therefore,the design and development of CRISPR/Cas9 systems with controllable activity is of paramount importance.Biotin,characterized by its small molecular weight,and streptavidin,distinguished by its substantial spatial steric hindrance,can be harnessed as an ideal OFF switch(termed a"bioactivity brake")due to their interaction characteristics.In this work,we present a strategy that employs the streptavidin-biotin interaction as a"brake system"for CRISPR/Cas9,effectively allowing for the shutdown of the enzymatic activity of CRISPR/Cas9.展开更多
DNA 5-formylcytosine(5fC)is a prominent epigenetic modification within biological systems.Recent investigations have shed light on its pivotal role in governing cell fate,gene expression,and disease pathways.However,o...DNA 5-formylcytosine(5fC)is a prominent epigenetic modification within biological systems.Recent investigations have shed light on its pivotal role in governing cell fate,gene expression,and disease pathways.However,our comprehension of the precise control of the 5f site structure to influence its functionality remains limited.In this study,we have successfully achieved precise control over 5fc activity by harnessing the interaction between streptavidin and biotin.This research underscores the potential application of interactions between biomacromolecules and small molecules in advancing the field of DNA epigenetic functional regulation.展开更多
Optical time-stretch(OTS)imaging flow cytometry offers a promising solution for high-throughput and highprecision cell analysis due to its capabilities of high-speed,high-quality,and continuous imaging.Compressed sens...Optical time-stretch(OTS)imaging flow cytometry offers a promising solution for high-throughput and highprecision cell analysis due to its capabilities of high-speed,high-quality,and continuous imaging.Compressed sensing(CS)makes it practically applicable by significantly reducing the data volume while maintaining its highspeed and high-quality imaging properties.To enrich the information of the images acquired with CS-equipped OTS imaging flow cytometry,in this work we propose and experimentally demonstrate Fourier-domaincompressed OTS quantitative phase imaging flow cytometry.It is capable of acquiring intensity and quantitative phase images of cells simultaneously from the compressed data.To evaluate the performance of our method,static microparticles and a corn root cross section are experimentally measured under various compression ratios.Furthermore,to show how our method can be applied in practice,we utilize it in the drug response analysis of breast cancer cells.Experimental results show that our method can acquire high-quality intensity and quantitative phase images of flowing cells at a flowing speed of 1 m/s and a compression ratio of 30%.Combined with machine-learning-based image analysis,it can distinguish drug-treated and drug-untreated cells with an accuracy of over 95%.We believe our method can facilitate cell analysis in both scientific research and clinical settings where both high-throughput and high-content cell analysis is required.展开更多
基金the National Natural Science Foundation of China(Nos.22177089,21721005,92153303,22037004,22177088)the Fundamental Research Funds for the Central Universities(2042023kf0204)Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(Grant No.ZNJC202309).
文摘Comprehensive Summary Currently,CRISPR/Cas9 technology has found widespread applications across various domains.However,the utility of CRISPR/Cas9 is encumbered by issues pertaining to its reliability and safety,primarily stemming from the uncontrolled activity of the system.Therefore,the design and development of CRISPR/Cas9 systems with controllable activity is of paramount importance.Biotin,characterized by its small molecular weight,and streptavidin,distinguished by its substantial spatial steric hindrance,can be harnessed as an ideal OFF switch(termed a"bioactivity brake")due to their interaction characteristics.In this work,we present a strategy that employs the streptavidin-biotin interaction as a"brake system"for CRISPR/Cas9,effectively allowing for the shutdown of the enzymatic activity of CRISPR/Cas9.
基金the National Natural Science Foundation of China(Nos.22177089,21721005,92153303,22037004,22177088)the Fundamental Research Funds for the Central Universities(2042021kf0211)Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(Grant No.ZNJC202309).
文摘DNA 5-formylcytosine(5fC)is a prominent epigenetic modification within biological systems.Recent investigations have shed light on its pivotal role in governing cell fate,gene expression,and disease pathways.However,our comprehension of the precise control of the 5f site structure to influence its functionality remains limited.In this study,we have successfully achieved precise control over 5fc activity by harnessing the interaction between streptavidin and biotin.This research underscores the potential application of interactions between biomacromolecules and small molecules in advancing the field of DNA epigenetic functional regulation.
基金National Key Research and Development Program of China(2023YFF0723300)Fundamental Research Funds for the Central Universities(2042023kf0105,2042024kf0003,2042024kf1010)+6 种基金Science Fund for Distinguished Young Scholars of Hubei Province(2021CFA042)Natural Science Foundation of Hubei Province(2023AFB133)National Natural Science Foundation of China(12374295,62075200)Interdisciplinary Innovative Talents Foundation from Renmin Hospital of Wuhan University(JCRCYR-2022-006)Jiangsu Science and Technology Program(BK20221257)Shenzhen Science and Technology Program(JCYJ20220530140601003,JCYJ20230807090207014)Translational Medicine and Multidisciplinary Research Project of Zhongnan Hospital of Wuhan University(ZNJC202217)。
文摘Optical time-stretch(OTS)imaging flow cytometry offers a promising solution for high-throughput and highprecision cell analysis due to its capabilities of high-speed,high-quality,and continuous imaging.Compressed sensing(CS)makes it practically applicable by significantly reducing the data volume while maintaining its highspeed and high-quality imaging properties.To enrich the information of the images acquired with CS-equipped OTS imaging flow cytometry,in this work we propose and experimentally demonstrate Fourier-domaincompressed OTS quantitative phase imaging flow cytometry.It is capable of acquiring intensity and quantitative phase images of cells simultaneously from the compressed data.To evaluate the performance of our method,static microparticles and a corn root cross section are experimentally measured under various compression ratios.Furthermore,to show how our method can be applied in practice,we utilize it in the drug response analysis of breast cancer cells.Experimental results show that our method can acquire high-quality intensity and quantitative phase images of flowing cells at a flowing speed of 1 m/s and a compression ratio of 30%.Combined with machine-learning-based image analysis,it can distinguish drug-treated and drug-untreated cells with an accuracy of over 95%.We believe our method can facilitate cell analysis in both scientific research and clinical settings where both high-throughput and high-content cell analysis is required.