A microtiter plate assay (MPA) for soluble reactive phosphorus (SRP) was applied to samples in overlying water and pore water as well as in three forms of environmental soil test phosphorus (P) types: water soluble ph...A microtiter plate assay (MPA) for soluble reactive phosphorus (SRP) was applied to samples in overlying water and pore water as well as in three forms of environmental soil test phosphorus (P) types: water soluble phosphorus (WSP),diluted calcium chloride extractable phosphorus (PCaCl2), and Olsen-P in the sediments of Taihu Lake, China, where potential P release in response to pH was analyzed. MPA for rapid P analysis was shown to be promising when applied on samples of natural water and sediment extracts. Concentrations of WSP and PCaCl2 in the sediments were much lower than those of Olsen-P. Olsen-P levels in the littoral sediments along the north coast of Meiliang Bay in Taihu Lake (80to 140 mg kg-1) were much higher than those in the mouth of the bay (less than 50 mg kg-1). The risk of P release in the mouth area of Meiliang Bay was lower than that in the north littoral zone with a risk of sediment P release induced by pH increases.展开更多
Advanced closed chamber system was used to study the fate of phenanthrene (3 rings PAHs) in the presence of linear alkylbenzene sulphonates(LAS). The results showed mineralization and metabolism of phenanthrene are f...Advanced closed chamber system was used to study the fate of phenanthrene (3 rings PAHs) in the presence of linear alkylbenzene sulphonates(LAS). The results showed mineralization and metabolism of phenanthrene are fast in the “culture solution lava plant air' model ecological system. The distribution proportions of applied 14 C activity in this simulative ecological system were 41%—45%, 14% to 10% and 1% in plant, lava and culture solution respectively, and 18% to 29%, 11% to 8% recovered in the forms of VOCs and CO 2. Main parts of the applied 14 C activity exist in two forms, one is polar metabolites(25%) which mainly distribute in the root(23%), the other is unextractable part(23%) which have been constructed into plant root(8 98%), shoot(0 53%) or bonded to lava(13 2%). The main metabolites of phenanthrene were polar compounds(25% of applied 14 C activity), and small portion of 14 C activity was identified as non polar metabolites(6% of applied 14 C activity) and apparent phenanthrene(1 91% of applied 14 C activity). Phenanthrene and its metabolites can be taken up through plant roots and translocated to plant shoots. The presence of LAS significantly increased the the concentration of 14 C activity in the plant and production of VOCs, at the same time it decreased the phenanthrene level in the plant and the production of CO 2 at the concentration of 200 mg/L.展开更多
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2002CB412304) the Chinese Academy of Sciences (No. KZCX1-SW-Ⅱ-32).
文摘A microtiter plate assay (MPA) for soluble reactive phosphorus (SRP) was applied to samples in overlying water and pore water as well as in three forms of environmental soil test phosphorus (P) types: water soluble phosphorus (WSP),diluted calcium chloride extractable phosphorus (PCaCl2), and Olsen-P in the sediments of Taihu Lake, China, where potential P release in response to pH was analyzed. MPA for rapid P analysis was shown to be promising when applied on samples of natural water and sediment extracts. Concentrations of WSP and PCaCl2 in the sediments were much lower than those of Olsen-P. Olsen-P levels in the littoral sediments along the north coast of Meiliang Bay in Taihu Lake (80to 140 mg kg-1) were much higher than those in the mouth of the bay (less than 50 mg kg-1). The risk of P release in the mouth area of Meiliang Bay was lower than that in the north littoral zone with a risk of sediment P release induced by pH increases.
文摘Advanced closed chamber system was used to study the fate of phenanthrene (3 rings PAHs) in the presence of linear alkylbenzene sulphonates(LAS). The results showed mineralization and metabolism of phenanthrene are fast in the “culture solution lava plant air' model ecological system. The distribution proportions of applied 14 C activity in this simulative ecological system were 41%—45%, 14% to 10% and 1% in plant, lava and culture solution respectively, and 18% to 29%, 11% to 8% recovered in the forms of VOCs and CO 2. Main parts of the applied 14 C activity exist in two forms, one is polar metabolites(25%) which mainly distribute in the root(23%), the other is unextractable part(23%) which have been constructed into plant root(8 98%), shoot(0 53%) or bonded to lava(13 2%). The main metabolites of phenanthrene were polar compounds(25% of applied 14 C activity), and small portion of 14 C activity was identified as non polar metabolites(6% of applied 14 C activity) and apparent phenanthrene(1 91% of applied 14 C activity). Phenanthrene and its metabolites can be taken up through plant roots and translocated to plant shoots. The presence of LAS significantly increased the the concentration of 14 C activity in the plant and production of VOCs, at the same time it decreased the phenanthrene level in the plant and the production of CO 2 at the concentration of 200 mg/L.