Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglyce...Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.展开更多
With integration of a larger amount of clean power sources and power electronic equipment,operation and dynamic characteristics of the power grid are becoming more and more complicated and stochastic.Therefore,it is n...With integration of a larger amount of clean power sources and power electronic equipment,operation and dynamic characteristics of the power grid are becoming more and more complicated and stochastic.Therefore,it is necessary and urgent to obtain accurate real-time states,which is difficult from traditional state estimation.This paper systematically develops a phasor measurement unit(PMU)based real-time state estimator for a realistic large-scale power grid for the first time.The estimator mainly relies on three refined algorithms,i.e.,an improved linear state estimation algorithm,a practical bad data identification method and a distributed topology check technique.Furthermore,a novel system architecture is designed and implemented for the China Southern Power Grid.Numerical simulations and extensive field operation results of the state estimator recorded under both normal and abnormal situations are presented.All the tests and field results demonstrate the advantages of the proposed algorithms in terms of online system monitoring and feasibility of refreshing the states of the whole system at intervals of tens of milliseconds.展开更多
In the era of smart agriculture,the precise labeling and recording of growth information in plants pose challenges for modern agricultural production.This study introduces strontium aluminate particles coated with H_(...In the era of smart agriculture,the precise labeling and recording of growth information in plants pose challenges for modern agricultural production.This study introduces strontium aluminate particles coated with H_(3)PO_(4)as luminescent labels capable of spatial embedding within plants for information encoding and storage during growth.The encapsulation with H_(3)PO_(4)imparts stability and enhanced luminescence to SrAl_(2)O_(4):Eu^(2+),Dy^(3+)(SAO).Using SAO@H_(3)PO_(4)as a low-damage luminescent label,we implement its delivery into plants through microneedles(MNs)patches.The embedded SAO@H_(3)PO_(4)within plants exhibits sustained and unaltered high signal-to-noise afterglow emission,with luminous intensity remaining at approximately 78%of the original for 27 days.To cater to diverse information recording needs,MNs of various geometric shapes are designed for loading SAO@H3PO4,and the luminescent signals in different shapes can be accurately identified through a designed program,the corresponding information can be conveniently viewed on a computer.Additionally,inspired by binary information concepts,MNs patches with specific arrangements of luminescent and non-luminescent points are created,resulting in varied luminescent MNs arrays on leaves.An advanced camera system with a tailored program accurately identifies and maps the labels to the corresponding recorded information.These findings showcase the potential of low-damage luminescent labels within plants,paving the way for convenient and widespread storage of plant growth information.展开更多
The quest for the room-temperature optical transistor based on nonlinearities in single atoms or molecules is attracting a lot of attention.In this work,a single-photon emitter in cubic silicon carbide is verified tha...The quest for the room-temperature optical transistor based on nonlinearities in single atoms or molecules is attracting a lot of attention.In this work,a single-photon emitter in cubic silicon carbide is verified that can operate as an optical switch at room temperature under pulsed green laser illumination with a near-infrared pulsed laser as the control gate.We demonstrated an ultrafast and reversible optical modulation with a high photoluminescence intensity suppression ratio up to 97.9%and a response time as short as 287.9±5.7 ps.The current development provides insights for high-precision and ultrafast optical switches,with possibilities for integration with emerging electronic installations to realize more intelligent photoelectric integrated devices.展开更多
Dear Editor,Soils contain the largest carbon(C) pool in terrestrial ecosystems.Even a small change in soil C pool may significantly influence atmospheric carbon dioxide(CO_(2)) concentration.Thus,it is critical to acc...Dear Editor,Soils contain the largest carbon(C) pool in terrestrial ecosystems.Even a small change in soil C pool may significantly influence atmospheric carbon dioxide(CO_(2)) concentration.Thus,it is critical to accurately assess the response of soil C pool to global change.Soil incubation is a frequently used method to assess soil C decomposition rate because it allows environmental variables to be under control(Unger et al.,2010;Shi and Marschner,2014).However,pre-treatments during soil sampling and processing,such as sieving and drying-rewetting,inevitably bring physical disturbances which may affect soil respiration rate(Franzluebbers,1999;Thomson et al.,2010;Curtin et al.,2014).展开更多
基金the financial support from the National Natural Science Foundation of China (No. 31201416)Science and Technology Research Program of Guangdong Province (No. 2017A01010502)。
文摘Seabuckthorn seed meal(SSM) is a waste of oil extraction industry that rich in protein. In order to seek suitable protein extraction method, three different deep eutectic solvents(DESs)(including choline chlorideglycerol, choline chloride-oxalic acid and choline chloride-urea) were developed for extracting protein from SSM and compared with alkaline. Result indicated that alkaline could effectively extract 56.9% protein from SSM and its protein content was 73.1%, higher than DES at 31.0%-41.4% and 64.3%-67.5%, respectively. However, compared to alkali, DES led to a product with less β-sheet, more β-turn, more essential amino acids, higher total amino acid content, especially choline chloride-urea which extracted protein showing an integrated and similar protein weight distribution compared to SSM. Also, this protein extracted chloride-urea showed a highest digestibility in vitro(by pepsin)(54.2%). These results indicated that choline chloride-urea extraction is better than alkaline extraction for SSM.
基金supported by the National Natural Science Foundation of China(U1766214,U2066601).
文摘With integration of a larger amount of clean power sources and power electronic equipment,operation and dynamic characteristics of the power grid are becoming more and more complicated and stochastic.Therefore,it is necessary and urgent to obtain accurate real-time states,which is difficult from traditional state estimation.This paper systematically develops a phasor measurement unit(PMU)based real-time state estimator for a realistic large-scale power grid for the first time.The estimator mainly relies on three refined algorithms,i.e.,an improved linear state estimation algorithm,a practical bad data identification method and a distributed topology check technique.Furthermore,a novel system architecture is designed and implemented for the China Southern Power Grid.Numerical simulations and extensive field operation results of the state estimator recorded under both normal and abnormal situations are presented.All the tests and field results demonstrate the advantages of the proposed algorithms in terms of online system monitoring and feasibility of refreshing the states of the whole system at intervals of tens of milliseconds.
基金supported by the National Natural Science Foundations of China(Grant Nos.12274144 and 52102042)the Project of GDUPS(2018)for Prof.Bingfu LEI,the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams(Nos.2022KJ22,2023KJ122)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Nos.2022A1515010452 and 2022A1515010229)the Guangdong Provincial Science&Technology Project(No.2020A1414010049).
文摘In the era of smart agriculture,the precise labeling and recording of growth information in plants pose challenges for modern agricultural production.This study introduces strontium aluminate particles coated with H_(3)PO_(4)as luminescent labels capable of spatial embedding within plants for information encoding and storage during growth.The encapsulation with H_(3)PO_(4)imparts stability and enhanced luminescence to SrAl_(2)O_(4):Eu^(2+),Dy^(3+)(SAO).Using SAO@H_(3)PO_(4)as a low-damage luminescent label,we implement its delivery into plants through microneedles(MNs)patches.The embedded SAO@H_(3)PO_(4)within plants exhibits sustained and unaltered high signal-to-noise afterglow emission,with luminous intensity remaining at approximately 78%of the original for 27 days.To cater to diverse information recording needs,MNs of various geometric shapes are designed for loading SAO@H3PO4,and the luminescent signals in different shapes can be accurately identified through a designed program,the corresponding information can be conveniently viewed on a computer.Additionally,inspired by binary information concepts,MNs patches with specific arrangements of luminescent and non-luminescent points are created,resulting in varied luminescent MNs arrays on leaves.An advanced camera system with a tailored program accurately identifies and maps the labels to the corresponding recorded information.These findings showcase the potential of low-damage luminescent labels within plants,paving the way for convenient and widespread storage of plant growth information.
基金National Key Research and Development Program of China(2021YFA1201503)National Natural Science Foundation of China(12274137)。
文摘The quest for the room-temperature optical transistor based on nonlinearities in single atoms or molecules is attracting a lot of attention.In this work,a single-photon emitter in cubic silicon carbide is verified that can operate as an optical switch at room temperature under pulsed green laser illumination with a near-infrared pulsed laser as the control gate.We demonstrated an ultrafast and reversible optical modulation with a high photoluminescence intensity suppression ratio up to 97.9%and a response time as short as 287.9±5.7 ps.The current development provides insights for high-precision and ultrafast optical switches,with possibilities for integration with emerging electronic installations to realize more intelligent photoelectric integrated devices.
基金supported by the National Natural Science Foundation of China (Nos. 31770529, 31971528, and 31988102)the Program of Chongqing Science and Technology Commission, China (No. cstc2020jcyj-msxmX0095)the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Nos. KJZD-K202001203 and KJZD-K202003501)。
文摘Dear Editor,Soils contain the largest carbon(C) pool in terrestrial ecosystems.Even a small change in soil C pool may significantly influence atmospheric carbon dioxide(CO_(2)) concentration.Thus,it is critical to accurately assess the response of soil C pool to global change.Soil incubation is a frequently used method to assess soil C decomposition rate because it allows environmental variables to be under control(Unger et al.,2010;Shi and Marschner,2014).However,pre-treatments during soil sampling and processing,such as sieving and drying-rewetting,inevitably bring physical disturbances which may affect soil respiration rate(Franzluebbers,1999;Thomson et al.,2010;Curtin et al.,2014).