Aluminum-activated malate transporters(ALMT)are widely involved in plant growth and metabolic processes,including adaptation to acid soils,guard cell regulation,anion homeostasis,and seed development.Although ALMT gen...Aluminum-activated malate transporters(ALMT)are widely involved in plant growth and metabolic processes,including adaptation to acid soils,guard cell regulation,anion homeostasis,and seed development.Although ALMT genes have been identified in Arabidopsis,wheat,barley,and Lotus japonicus,little is known about its presence in Gossypium hirsutum L.In this study,ALMT gene recognition in diploid and tetraploid cotton were done using bioinformatics analysis that examined correlation between homology and evolution.Differentially regulated ALMT genetic profile in G.hirsutum was examined,using RNA sequencing and qRT-PCR,during six fiber developmental time-points,namely 5 d,7 d,10 d,15 d,20 d,and 25 d.We detected 36 ALMT genes in G.hirsutum,which were subsequently annotated and divided into seven sub-categories.Among these ALMT genes,34 had uneven distribution across 14/26 chromosomes.Conserved domains and gene structure analysis indicated that ALMT genes were highly conserved and composed of exons and introns.The GhALMT gene expression profile at different DPA(days post anthesis)in different varieties of G.hirsutum is indicative of a crucial role of ALMT genes in fiber development in G.hirsutum.This study provides basis for advancements in the cloning and functional enhancements of ALMT genes in enhancing fiber development and augmenting high quality crop production.展开更多
Determining how function evolves following gene duplication is necessary for understanding gene expansion.Transcription factors(TFs)are a class of proteins that regulate gene expression by binding to specific cis-acti...Determining how function evolves following gene duplication is necessary for understanding gene expansion.Transcription factors(TFs)are a class of proteins that regulate gene expression by binding to specific cis-acting elements in the promoters of target genes,subsequently activating or repressing their transcription.In the present study,we systematically examined the functional diversification of the NAC transcription factor(NAC-TFs)family by analyzing their chromosomal location,structure,phylogeny,and expression pattern in Gossypium raimondii(Gr)and G.arboreum(Ga).The 145 and 141 NAC genes identified in the Gr and Ga genomes,respectively,were annotated and divided into 18 subfamilies,which showed distinct divergence in gene structure and expression patterns during fiber development.In addition,when the functional parameters were examined,clear divergence was observed within tandem clusters,which suggested that subfunctionalization had occurred among duplicate genes.The expression patterns of homologous gene pairs also changed,suggestive of the diversification of gene function during the evolution of diploid cotton.These findings provide insights into the mechanisms underlying the functional differentiation of duplicated NAC-TFs genes in two diploid cotton species.展开更多
To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 populatio...To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum × Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.展开更多
基金This study was funded by the National Natural Science Foundation of China(U1804103,31101188)Sponsored by State Key Laboratory of Cotton Biology Open Fund(CB2020A10).
文摘Aluminum-activated malate transporters(ALMT)are widely involved in plant growth and metabolic processes,including adaptation to acid soils,guard cell regulation,anion homeostasis,and seed development.Although ALMT genes have been identified in Arabidopsis,wheat,barley,and Lotus japonicus,little is known about its presence in Gossypium hirsutum L.In this study,ALMT gene recognition in diploid and tetraploid cotton were done using bioinformatics analysis that examined correlation between homology and evolution.Differentially regulated ALMT genetic profile in G.hirsutum was examined,using RNA sequencing and qRT-PCR,during six fiber developmental time-points,namely 5 d,7 d,10 d,15 d,20 d,and 25 d.We detected 36 ALMT genes in G.hirsutum,which were subsequently annotated and divided into seven sub-categories.Among these ALMT genes,34 had uneven distribution across 14/26 chromosomes.Conserved domains and gene structure analysis indicated that ALMT genes were highly conserved and composed of exons and introns.The GhALMT gene expression profile at different DPA(days post anthesis)in different varieties of G.hirsutum is indicative of a crucial role of ALMT genes in fiber development in G.hirsutum.This study provides basis for advancements in the cloning and functional enhancements of ALMT genes in enhancing fiber development and augmenting high quality crop production.
基金the National High Technology Research and Development Program of China (2013AA102601)the National Natural Science Foundation of China (31471538)
文摘Determining how function evolves following gene duplication is necessary for understanding gene expansion.Transcription factors(TFs)are a class of proteins that regulate gene expression by binding to specific cis-acting elements in the promoters of target genes,subsequently activating or repressing their transcription.In the present study,we systematically examined the functional diversification of the NAC transcription factor(NAC-TFs)family by analyzing their chromosomal location,structure,phylogeny,and expression pattern in Gossypium raimondii(Gr)and G.arboreum(Ga).The 145 and 141 NAC genes identified in the Gr and Ga genomes,respectively,were annotated and divided into 18 subfamilies,which showed distinct divergence in gene structure and expression patterns during fiber development.In addition,when the functional parameters were examined,clear divergence was observed within tandem clusters,which suggested that subfunctionalization had occurred among duplicate genes.The expression patterns of homologous gene pairs also changed,suggestive of the diversification of gene function during the evolution of diploid cotton.These findings provide insights into the mechanisms underlying the functional differentiation of duplicated NAC-TFs genes in two diploid cotton species.
基金funded by the National Basic Research Program of China (973 Project) (2010CB126000)the National High Technology Research and Development Program of China (2012AA101108)+1 种基金the National Natural Science Foundation of China (31101188)the fund project of Director (SJA1203)
文摘To introgress the good fiber quality and yield from Gossypium barbadense into a commercial Upland cotton variety, a high‐density simple sequence repeat (SSR) genetic linkage map was developed from a BC1F1 population of Gossypium hirsutum × Gossypium barbadense. The map com-prised 2,292 loci and covered 5115.16 centiMorgan (cM) of the cotton AD genome, with an average marker interval of 2.23 cM. Of the marker order for 1,577 common loci on this new map, 90.36% agrees well with the marker order on the D genome sequence genetic map. Compared with five pub-lished high‐density SSR genetic maps, 53.14% of marker loci were newly discovered in this map. Twenty‐six quantitative trait loci (QTLs) for lint percentage (LP) were identified on nine chromosomes. Nine stable or common QTLs could be used for marker‐assisted selection. Fifty percent of the QTLs were from G. barbadense and increased LP by 1.07%–2.41%. These results indicated that the map could be used for screening chromosome substitution segments from G. barbadense in the Upland cotton background, identifying QTLs or genes from G. barbadense, and further developing the gene pyramiding effect for improving fiber yield and quality.