Frost can cause serious economic losses in cranberry fields, particularly in northern regions. When the air temperature reaches a low critical threshold, sprinklers are operated to protect vines, to insure crop produc...Frost can cause serious economic losses in cranberry fields, particularly in northern regions. When the air temperature reaches a low critical threshold, sprinklers are operated to protect vines, to insure crop production and profitability. To avoid frost injury, proper positioning of temperature sensors is critical. A field experiment was designed and conducted to determine the optimal installation height of sensors above soil surface. Temperature data was used to investigate the spatial temperature gradient in the section of a cranberry field. A computer simulation of the temperature profile was performed to simulate the effect of wind velocity on the prediction of air temperature. For optimal use, sensors should be installed at the height of the canopy and several meters away from a dike. On nights with low wind velocities, the canopy air temperature was 2.7°C below that of 500 cm above the ground. The sensors should be put at least five m away from a dike to avoid the transfer of heat from the dike to the sensor. Also, multiple sensors should be installed because of the large variations in air temperature that were measured across the experiment. The simulated temperature indicated that wind velocity strongly influenced the temperature estimation;the effect of the wind on temperatures gradients was greater when the wind velocity was low (<2.3 m/s).展开更多
Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to...Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to be explored. A greenhouse experiment using annual ryegrass(Lolium multiflorum L.) was performed with an experimental design of three completely randomized blocks of two soils and 29 treatments: one control without P and two levels of 9 and 26 kg total P ha^(-1) from 14 different sources: twelve SIAs(not contaminated by trace metals) from the US and Canada, one commercial synthetic fertilizer(triple superphosphate(TSP)), and one commercial rock phosphate(RP). Higher ryegrass biomass levels were achieved at the higher fertilization rate(26 kg total P ha^(-1))and when using the SIAs with the highest P solubility percentage(PSP)(≥ 54% of total P). The biomass increases following SIA application were as high as 29% and 59% more than the control for the sandy loam and clayey soil, respectively, but 40% less than in TSP for both soils. A similar behavior was observed for P uptake, with a maximum increase of 26% for the clayey soil, and 165% for the sandy loam soil. The ryegrass biomass and P uptake increases due to SIA application were larger than those due to RP application in the clayey soil, but similar to those in the sandy loam soil. The SIAs with a PSP of ≥ 54% significantly increased soil available P stocks and saturation. According to our findings, we conclude that the SIAs from municipal and agrifood industries have a potential for P agricultural recycling, but their efficiencies vary.展开更多
文摘Frost can cause serious economic losses in cranberry fields, particularly in northern regions. When the air temperature reaches a low critical threshold, sprinklers are operated to protect vines, to insure crop production and profitability. To avoid frost injury, proper positioning of temperature sensors is critical. A field experiment was designed and conducted to determine the optimal installation height of sensors above soil surface. Temperature data was used to investigate the spatial temperature gradient in the section of a cranberry field. A computer simulation of the temperature profile was performed to simulate the effect of wind velocity on the prediction of air temperature. For optimal use, sensors should be installed at the height of the canopy and several meters away from a dike. On nights with low wind velocities, the canopy air temperature was 2.7°C below that of 500 cm above the ground. The sensors should be put at least five m away from a dike to avoid the transfer of heat from the dike to the sensor. Also, multiple sensors should be installed because of the large variations in air temperature that were measured across the experiment. The simulated temperature indicated that wind velocity strongly influenced the temperature estimation;the effect of the wind on temperatures gradients was greater when the wind velocity was low (<2.3 m/s).
基金the Natural Sciences and Engineering Research Council of Canada (NSERC) (No. RDCPJ471059-14)the Ministry of Sustainable Development, Environment and the Fight against Climate Change (MDDELCC), Canadathe participating incinerators for their financial support
文摘Phosphorus(P) is a limited resource that could be depleted. Consequently, recycling the P contained in sewage sludge, including sewage sludge incineration ash(SIA), from wastewater treatment plants is a possibility to be explored. A greenhouse experiment using annual ryegrass(Lolium multiflorum L.) was performed with an experimental design of three completely randomized blocks of two soils and 29 treatments: one control without P and two levels of 9 and 26 kg total P ha^(-1) from 14 different sources: twelve SIAs(not contaminated by trace metals) from the US and Canada, one commercial synthetic fertilizer(triple superphosphate(TSP)), and one commercial rock phosphate(RP). Higher ryegrass biomass levels were achieved at the higher fertilization rate(26 kg total P ha^(-1))and when using the SIAs with the highest P solubility percentage(PSP)(≥ 54% of total P). The biomass increases following SIA application were as high as 29% and 59% more than the control for the sandy loam and clayey soil, respectively, but 40% less than in TSP for both soils. A similar behavior was observed for P uptake, with a maximum increase of 26% for the clayey soil, and 165% for the sandy loam soil. The ryegrass biomass and P uptake increases due to SIA application were larger than those due to RP application in the clayey soil, but similar to those in the sandy loam soil. The SIAs with a PSP of ≥ 54% significantly increased soil available P stocks and saturation. According to our findings, we conclude that the SIAs from municipal and agrifood industries have a potential for P agricultural recycling, but their efficiencies vary.