期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries 被引量:8
1
作者 jae-geun kim Dongqi Shi +6 位作者 Min-Sik Park Goojin Jeong Yoon-Uk Heo Minsu Seo Young-Jun kim Jung Ho kim Shi Xue Dou 《Nano Research》 SCIE EI CAS CSCD 2013年第5期365-372,共8页
The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designe... The morphology and electronic structure of a Li4Ti5012 anode are known to determine its electrical and electrochemical properties in lithium rechargeable batteries. Ag-Li4Ti5012 nanofibers have been rationally designed and synthesized by an electrospinning technique to meet the requirements of one-dimensional (1D) morphology and superior electrical conductivity. Herein, we have found that the 1D Ag-Li4Ti5012 nanofibers show enhanced specific capacity, rate capability, and cycling stability compared to bare Li4Ti5012 nanofibers, due to the Ag nanoparticles (〈5 nm), which are mainly distributed at interfaces between Li4Ti5O12 primary particles. This structural morphology gives rise to 20% higher rate capability than bare Li4Ti5O12 nanofibers by facilitating the charge transfer kinetics. Our findings provide an effective way to improve the electrochemical performance of Li4Ti5O12 anodes for lithium rechargeable batteries. 展开更多
关键词 spinel Li4Ti5012 (LTO) ELECTROSPINNING silver doping lithium rechargeablebatteries 1D nanostructure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部