期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanical strength and corrosion resistance of Al-additive friction stir welded AZ31B joints
1
作者 Jae-Yeon Kim Eun-Woo Kim +4 位作者 Dong-O Kim Eun-Kyo Ju Ji-Eun lee jaeheon lee Jai-Won Byeon 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1519-1535,共17页
Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using... Compared to other structural alloys,magnesium alloys have a relatively poor corrosion resistance and low mechanical strength,which can be further deteriorated when these alloys are subjected to joining processes using the existing joining methods.Herein,we propose for the first time an additive friction stir-welding(AFSW)using fine Al powder as an additive to improve the mechanical strength as well as corrosion resistance of AZ31B weld joints.AFSW is a solid-state welding method of forming a high-Al AZ31B joint via an in-situ reaction between pure Al powders filled in a machined groove and the AZ31B matrix.To optimize the process parameters,AFSW was performed under different rotational and transverse speeds,and number of passes,using tools with a square or screw pin.In particular,to fabricate a weld zone,where the Al was homogenously dispersed,the effects of the groove shape were investigated using three types of grooves:surface one-line groove,surface-symmetric grooves,and inserted symmetric grooves.The homogenous and defect-less AFS-welded AZ31B joint was successfully fabricated with the following optimal parameters:1400 rpm,25 mm/min,four passes,inserted symmetric grooves,and the tool with a square pin.The AFSW fully dissolved the additive Al intoα-Mg and in-situ precipitated Mg_(17)Al_(12)particles,which was confirmed via scanning electron microscopy,transmission electron microscope,and X-ray diffraction analyses.The microhardness,joint efficiency,and elongation at the fracture point of the AFS-welded AZ31B joint were 80 HV,101%,and 8.9%,respectively.These values are higher than those obtained for the FS-welded AZ31 joint in previous studies.The corrosion resistance of the AFS-welded AZ31B joint,evaluated via hydrogen evolution measurements and potentiodynamic polarization tests,was enhanced to 55%relative to the FS-welded AZ31B joint. 展开更多
关键词 AZ31B magnesium alloy Additive friction stir-welding In-situ reaction Mg_(17)Al_(12)particles Joint efficiency Corrosion resistance
下载PDF
Adsorption characteristics of Cd(Ⅱ) and Ni(Ⅱ) from aqueous solution using succinylated hay
2
作者 Peijia Lin Jiajia Wu +1 位作者 Junmo Ahn jaeheon lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第10期1239-1246,共8页
An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(Ⅱ) and cadmium(Ⅱ) solutions to simulate heavy-metal re... An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(Ⅱ) and cadmium(Ⅱ) solutions to simulate heavy-metal recovery from aqueous solution. The adsorption efficiency was greater than 98% for both cadmium and nickel ions when the biosorbent concentration was 5.0 g/L and the initial metal concentrations were 50 mg/L. The surface of the biosorbent was characterized using Fourier transform infrared spectroscopy to investigate the changes in the surface functional groups. The functional groups changed according to the surface treatment, resulting in an effective biosorbent. The kinetics of the metals adsorption revealed that the reactions are pseudo-second order, and the adsorption isotherm well followed the Langmuir model. The maximum adsorption capacities predicted by the Langmuir model were 75.19 mg/g and 57.77 mg/g for cadmium and nickel, respectively. The fabricated biosorbent was regenerated using Na Cl multiple times, with 2.1% for Cd and 4.0% for Ni in adsorption capacity after three regeneration cycles. The proposed biosorbent can be a good alternative to resin or other chemical adsorbents for heavy-metal recovery in metallurgical processing or municipal water treatment. 展开更多
关键词 CADMIUM nickel BIOSORBENT SUCCINYLATION HAY LANGMUIR adsorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部