This paper presents both application and comparison of the metaheuristic techniques to multi-area economic dispatch(MAED)problem with tie line constraints considering transmission losses,multiple fuels,valve-point loa...This paper presents both application and comparison of the metaheuristic techniques to multi-area economic dispatch(MAED)problem with tie line constraints considering transmission losses,multiple fuels,valve-point loading and prohibited operating zones.The metaheuristic techniques such as differential evolution,evolutionary programming,genetic algorithm and simulated annealing are applied to solve MAED problem.These metaheuristic techniques for MAED problem are evaluated on three different test systems,both small and large,involving varying degree of complexity and the results are compared against each other.展开更多
This paper presents opposition-based differential evolution to determine the optimal hourly schedule of power generation in a hydrothermal system.Differential evolution(DE)is a population-based stochastic parallel sea...This paper presents opposition-based differential evolution to determine the optimal hourly schedule of power generation in a hydrothermal system.Differential evolution(DE)is a population-based stochastic parallel search evolutionary algorithm.Opposition-based differential evolution has been used here to improve the effectiveness and quality of the solution.The proposed opposition-based differential evolution(ODE)employs opposition-based learning(OBL)for population initialization and also for generation jumping.The effectiveness of the proposed method has been verified on two test problems,two fixed head hydrothermal test systems and three hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating zones and thermal units with valve point loading.The results of the proposed approach are compared with those obtained by other evolutionary methods.It is found that the proposed opposition-based differential evolution based approach is able to provide better solution.展开更多
文摘This paper presents both application and comparison of the metaheuristic techniques to multi-area economic dispatch(MAED)problem with tie line constraints considering transmission losses,multiple fuels,valve-point loading and prohibited operating zones.The metaheuristic techniques such as differential evolution,evolutionary programming,genetic algorithm and simulated annealing are applied to solve MAED problem.These metaheuristic techniques for MAED problem are evaluated on three different test systems,both small and large,involving varying degree of complexity and the results are compared against each other.
文摘This paper presents opposition-based differential evolution to determine the optimal hourly schedule of power generation in a hydrothermal system.Differential evolution(DE)is a population-based stochastic parallel search evolutionary algorithm.Opposition-based differential evolution has been used here to improve the effectiveness and quality of the solution.The proposed opposition-based differential evolution(ODE)employs opposition-based learning(OBL)for population initialization and also for generation jumping.The effectiveness of the proposed method has been verified on two test problems,two fixed head hydrothermal test systems and three hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating zones and thermal units with valve point loading.The results of the proposed approach are compared with those obtained by other evolutionary methods.It is found that the proposed opposition-based differential evolution based approach is able to provide better solution.