Light-emitting diodes(LEDs)are driving a shift toward energy-efficient illumination.Nonetheless,modifying the emission intensities,colors and directionalities of LEDs in specific ways remains a challenge often tackled...Light-emitting diodes(LEDs)are driving a shift toward energy-efficient illumination.Nonetheless,modifying the emission intensities,colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components.Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their strong light–matter interaction,which facilitates control over light emission without requiring external secondary optical components.This review discusses new methods that enhance the efficiencies of LEDs using nanostructured metals.This is an emerging field that incorporates physics,materials science,device technology and industry.First,we provide a general overview of state-of-the-art LED lighting,discussing the main characteristics required of both quantum wells and color converters to efficiently generate white light.Then,we discuss the main challenges in this field as well as the potential of metallic nanostructures to circumvent them.We review several of the most relevant demonstrations of LEDs in combination with metallic nanostructures,which have resulted in light-emitting devices with improved performance.We also highlight a few recent studies in applied plasmonics that,although exploratory and eminently fundamental,may lead to new solutions in illumination.展开更多
Dielectric optical antennas have emerged as a promising nanophotonic architecture for manipulating the propagation and localization of light.However,the optically induced Mie resonances in an isolated nanoantenna are ...Dielectric optical antennas have emerged as a promising nanophotonic architecture for manipulating the propagation and localization of light.However,the optically induced Mie resonances in an isolated nanoantenna are normally with broad spectra and poor𝑄-factors,limiting their performances in sensing,lasing,and nonlinear optics.Here,we dramatically enhance the𝑄-factors of Mie resonances in silicon(Si)nanoparticles across the optical band by arranging the nanoparticles in a periodic lattice.We select monocrystalline Si with negligible material losses and develop a unique method to fabricate nanoparticle arrays on a quartz substrate.By extinction dispersion measurements and electromagnetic analysis,we can identify three types of collective Mie resonances with𝑄-factors∼500 in the same nanocylinder arrays,including surface lattice resonances,bound states in the continuum,and quasi-guided modes.Our work paves the way for fundamental research in strong light-matter interactions and the design of highly efficient light-emitting metasurfaces.展开更多
We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb.The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface ...We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb.The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled.This control is achieved by acting on the free carrier density,which can be realized by changing the temperature of InSb.展开更多
基金supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO)through the project LEDMAP of the Technology Foundation STWthrough the Industrial Partnership Program Nanophotonics for Solid State Lighting between Philips and the Foundation for Fundamental Research on Matter FOMsupported by NanoNextNL of the Government of the Netherlands and 130 partners.
文摘Light-emitting diodes(LEDs)are driving a shift toward energy-efficient illumination.Nonetheless,modifying the emission intensities,colors and directionalities of LEDs in specific ways remains a challenge often tackled by incorporating secondary optical components.Metallic nanostructures supporting plasmonic resonances are an interesting alternative to this approach due to their strong light–matter interaction,which facilitates control over light emission without requiring external secondary optical components.This review discusses new methods that enhance the efficiencies of LEDs using nanostructured metals.This is an emerging field that incorporates physics,materials science,device technology and industry.First,we provide a general overview of state-of-the-art LED lighting,discussing the main characteristics required of both quantum wells and color converters to efficiently generate white light.Then,we discuss the main challenges in this field as well as the potential of metallic nanostructures to circumvent them.We review several of the most relevant demonstrations of LEDs in combination with metallic nanostructures,which have resulted in light-emitting devices with improved performance.We also highlight a few recent studies in applied plasmonics that,although exploratory and eminently fundamental,may lead to new solutions in illumination.
基金the National Natural Science Foundation of China(62120106001,62275184,61875143,and 62104165)the Natural Science Foundation of Jiangsu Province(BK20200859,BK20200857,and BK20210713)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.JGR and PB also acknowledge financial support from Nederlandse Organisatie voor Wetenschappelijk Onderzoek(NWO)(Vici 680-47-628).
文摘Dielectric optical antennas have emerged as a promising nanophotonic architecture for manipulating the propagation and localization of light.However,the optically induced Mie resonances in an isolated nanoantenna are normally with broad spectra and poor𝑄-factors,limiting their performances in sensing,lasing,and nonlinear optics.Here,we dramatically enhance the𝑄-factors of Mie resonances in silicon(Si)nanoparticles across the optical band by arranging the nanoparticles in a periodic lattice.We select monocrystalline Si with negligible material losses and develop a unique method to fabricate nanoparticle arrays on a quartz substrate.By extinction dispersion measurements and electromagnetic analysis,we can identify three types of collective Mie resonances with𝑄-factors∼500 in the same nanocylinder arrays,including surface lattice resonances,bound states in the continuum,and quasi-guided modes.Our work paves the way for fundamental research in strong light-matter interactions and the design of highly efficient light-emitting metasurfaces.
基金supported by the European Research Council (ERC) (No. 259272)the European Commission Seventh Framework Programme (FP7) (No. FP7-224189)it is part of the research program of FOM, which is financially supported by NWO
文摘We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb.The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled.This control is achieved by acting on the free carrier density,which can be realized by changing the temperature of InSb.