Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks(MOFs)based electromagnetic wave(EMW)absor...Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks(MOFs)based electromagnetic wave(EMW)absorbers.Herein,hierarchical heterostructure WS_(2)/CoS_(2)@carbonized cotton fiber(CCF)was fabricated using the ZIF-67 MOFs nanosheets anchored cotton fiber(ZIF-67@CF)as a precursor through the tungsten etching,sulfurization,and carbonization process.Apart from the synergetic effect of dielectric-magnetic dual-loss mechanism,the hierarchical heterostructure and multicomponent of WS_(2)/CoS_(2)@CCF also display improved impedance matching.Furthermore,numerous W-S-Co bands and heterojunction interfaces of heterogeneous WS_(2)/CoS_(2)are beneficial to promoting additional interfacial/dipole polarization loss and conductive loss,thereby enhancing the EMW attenuation performance.Based on the percolation theory,a good balance between impedance matching and EMW absorption capacity was achieved for the WS_(2)/CoS_(2)@CCF/paraffin composite with 20 wt.%filler loading,exhibiting strong EMW absorption capability with a minimum reflection loss(RLmin)value of−51.26 dB at 17.36 GHz with 2 mm thickness and a maximum effective absorption bandwidth(EABmax)as wide as 6.72 GHz.Our research will provide new guidance for designing high-efficient MOFs derived EMW absorbers.展开更多
基金the National Natural Science Foundation of China(Nos.51803191 and 12072325)the National Key R&D Program of China(No.2019YFA0706802)+2 种基金the 111 project(No.D18023)Key Scientific and Technological Project of Henan Province(No.202102210038)the Deanship of Scientific Research at Umm Al-Qura University(No.22UQU4331100DSR01).
文摘Rational construction of hierarchical multi-component materials with abundant heterostructure is evolving as a promising strategy to achieve excellent metal-organic frameworks(MOFs)based electromagnetic wave(EMW)absorbers.Herein,hierarchical heterostructure WS_(2)/CoS_(2)@carbonized cotton fiber(CCF)was fabricated using the ZIF-67 MOFs nanosheets anchored cotton fiber(ZIF-67@CF)as a precursor through the tungsten etching,sulfurization,and carbonization process.Apart from the synergetic effect of dielectric-magnetic dual-loss mechanism,the hierarchical heterostructure and multicomponent of WS_(2)/CoS_(2)@CCF also display improved impedance matching.Furthermore,numerous W-S-Co bands and heterojunction interfaces of heterogeneous WS_(2)/CoS_(2)are beneficial to promoting additional interfacial/dipole polarization loss and conductive loss,thereby enhancing the EMW attenuation performance.Based on the percolation theory,a good balance between impedance matching and EMW absorption capacity was achieved for the WS_(2)/CoS_(2)@CCF/paraffin composite with 20 wt.%filler loading,exhibiting strong EMW absorption capability with a minimum reflection loss(RLmin)value of−51.26 dB at 17.36 GHz with 2 mm thickness and a maximum effective absorption bandwidth(EABmax)as wide as 6.72 GHz.Our research will provide new guidance for designing high-efficient MOFs derived EMW absorbers.