This study proposes a new flexible family of distributions called the Lambert-G family.The Lambert family is very flexible and exhibits desirable properties.Its three-parameter special sub-models provide all significa...This study proposes a new flexible family of distributions called the Lambert-G family.The Lambert family is very flexible and exhibits desirable properties.Its three-parameter special sub-models provide all significantmonotonic and non-monotonic failure rates.A special sub-model of the Lambert family called the Lambert-Lomax(LL)distribution is investigated.General expressions for the LL statistical properties are established.Characterizations of the LL distribution are addressed mathematically based on its hazard function.The estimation of the LL parameters is discussed using six estimation methods.The performance of this estimation method is explored through simulation experiments.The usefulness and flexibility of the LL distribution are demonstrated empirically using two real-life data sets.The LL model better fits the exponentiated Lomax,inverse power Lomax,Lomax-Rayleigh,power Lomax,and Lomax distributions.展开更多
文摘This study proposes a new flexible family of distributions called the Lambert-G family.The Lambert family is very flexible and exhibits desirable properties.Its three-parameter special sub-models provide all significantmonotonic and non-monotonic failure rates.A special sub-model of the Lambert family called the Lambert-Lomax(LL)distribution is investigated.General expressions for the LL statistical properties are established.Characterizations of the LL distribution are addressed mathematically based on its hazard function.The estimation of the LL parameters is discussed using six estimation methods.The performance of this estimation method is explored through simulation experiments.The usefulness and flexibility of the LL distribution are demonstrated empirically using two real-life data sets.The LL model better fits the exponentiated Lomax,inverse power Lomax,Lomax-Rayleigh,power Lomax,and Lomax distributions.