We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core^shell metal oxide nanopartides by thermal annealing. The final pro...We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core^shell metal oxide nanopartides by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.展开更多
基金The authors acknowledge the support from the National Science Foundation Electronic and Photonic Materials (No. 1206425) and the startup fund from Iowa State University. Y. W. also thanks the support from the Eastern Scholar Program.
文摘We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core^shell metal oxide nanopartides by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.