This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pent...This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pentadecylphenols (APP). This was achieved through isolating anacardic acid from the CNSL via calcium anacardate procedure, followed by hydrogenation of the alkenyl side chains, and subsequently decarboxylating the product to form 3-pentadecylphenol, which was then nitrated and reduced to a mixture of APP. APP were co-polymerized with ethylene glycol dimethacrylate (EGDMA) to form poly(APP-co-EGDMA) particles. The chemical structures of the synthesized compounds were confirmed by Fourier Transform IR and 1H-NMR. The co-polymer particles were characterized by Scanning Electron Microscopy (SEM) to establish their morphological properties. The prepared co-polymer particles were found to have-NH loading of 46 mmol/g and a maximum adsorption capacity for Cr(III) ions of 16 mg per g of dry polymer particles. The spent polymer particles were recoverable and reusable.展开更多
文摘This work was aimed at synthesizing Cashew Nut Shell Liquid (CNSL) based polymer particles for adsorption of Cr(III) ions from aqueous solutions. Natural CNSL was used as a starting material in synthesizing amino pentadecylphenols (APP). This was achieved through isolating anacardic acid from the CNSL via calcium anacardate procedure, followed by hydrogenation of the alkenyl side chains, and subsequently decarboxylating the product to form 3-pentadecylphenol, which was then nitrated and reduced to a mixture of APP. APP were co-polymerized with ethylene glycol dimethacrylate (EGDMA) to form poly(APP-co-EGDMA) particles. The chemical structures of the synthesized compounds were confirmed by Fourier Transform IR and 1H-NMR. The co-polymer particles were characterized by Scanning Electron Microscopy (SEM) to establish their morphological properties. The prepared co-polymer particles were found to have-NH loading of 46 mmol/g and a maximum adsorption capacity for Cr(III) ions of 16 mg per g of dry polymer particles. The spent polymer particles were recoverable and reusable.