TaC nanowires are expected to be an ideal reinforcing material in ultra-high-temperature ceramics. However, their growth mechanisms and mechanical properties remain unclear, and low-cost large-scale synthesis has not ...TaC nanowires are expected to be an ideal reinforcing material in ultra-high-temperature ceramics. However, their growth mechanisms and mechanical properties remain unclear, and low-cost large-scale synthesis has not been realised. In this study,bulk synthesis of [100]-oriented TaC nanowires is accomplished by carbothermal synthesis through a direct vapor-solid mechanism. Thermal resonance test results show that the synthesized square TaC nanowires with cross-sectional side-lengths of 65 to 497 nm have a size-independent Young’s modulus of(510.6±12.6) GPa;very close to the corresponding values of their bulk counterparts, but differing considerably from previously published measurements. Molecular dynamics(MD) simulations show that TaC nanowires with side-lengths of above 15 nm have a constant Young’s modulus of 517 GPa, and size effects on the modulus values should only occur at side-lengths below 15 nm. During bending tests, the TaC nanowires fracture into several segments in a brittle mode, and exhibit an increasing fracture strain from 1.88% to 4.28% as their side-length decreases from 489 to 90 nm. Weibull statistics analyses and TEM observations indicate that the failure of the nanowires should be primarily dependent on the number and size of surface defects. MD simulations further reveal that the defect-free TaC nanowires fail brittlely at a theoretical strain up to 5.76%.展开更多
The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on t...The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on the step-free and waviness-free NG substrate exhibit a diameter-independent nominal frictional shear stress of 0.48 MPa,and this provides a benchmark for studying how the surface topography of graphite influences nanowire friction.Nanowires on the HOPG substrate present a significant diameter-dependent frictional shear stress,increasing from 0.25 to 2.78 MPa with the decrease of nanowire diameter from 485 to 142 nm.The waviness of HOPG has a limited effect on the nanowire friction,as a nanowire can fully conform to the substrate.The surface steps on the HOPG can significantly enhance the nanowire friction and lead to a much higher frictional shear stress than that on NG due to mechanical blocking and the presence of a Schwoebel barrier at step edges.The surface steps,however,can also generate small wedge-shaped gaps between a nanowire and substrate,and thus reduce the nanowire friction.With the decrease in nanowire diameter,the capacity for the nanowire to better conform to the substrate reduces the length of the wedge-shaped gaps,leading to the observed increase in nanowire friction.The results have improved our understanding of the unique friction behaviour of nanowires.Such an improved understanding is expected to benefit the design and operation of nanowire-friction-based devices,including bio-inspired fibrillar adhesives,soft grippers,rotary nanomotors,and triboelectric nanogenerators.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11674399)the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4676)+1 种基金the Fundamental Research Funds for the Central Universities of Central South Universitythe Australian Research Council(Grant No.DP160103190)。
文摘TaC nanowires are expected to be an ideal reinforcing material in ultra-high-temperature ceramics. However, their growth mechanisms and mechanical properties remain unclear, and low-cost large-scale synthesis has not been realised. In this study,bulk synthesis of [100]-oriented TaC nanowires is accomplished by carbothermal synthesis through a direct vapor-solid mechanism. Thermal resonance test results show that the synthesized square TaC nanowires with cross-sectional side-lengths of 65 to 497 nm have a size-independent Young’s modulus of(510.6±12.6) GPa;very close to the corresponding values of their bulk counterparts, but differing considerably from previously published measurements. Molecular dynamics(MD) simulations show that TaC nanowires with side-lengths of above 15 nm have a constant Young’s modulus of 517 GPa, and size effects on the modulus values should only occur at side-lengths below 15 nm. During bending tests, the TaC nanowires fracture into several segments in a brittle mode, and exhibit an increasing fracture strain from 1.88% to 4.28% as their side-length decreases from 489 to 90 nm. Weibull statistics analyses and TEM observations indicate that the failure of the nanowires should be primarily dependent on the number and size of surface defects. MD simulations further reveal that the defect-free TaC nanowires fail brittlely at a theoretical strain up to 5.76%.
基金This project is financially supported by the National Natural Science Foundation of China(Nos.12072111 and 11674399)Hunan Provincial Natural Science Foundation of China(No.2020JJ4676)+1 种基金Changsha Municipal Natural Science Foundation(No.kq2007002)Australian Research Council(No.DP160103190).
文摘The friction behaviour of ZnO nanowires on natural graphite(NG)and highly oriented pyrolytic graphite(HOPG)substrates was tested in ambient conditions by use of optical microscopy based nanomanipulation.Nanowires on the step-free and waviness-free NG substrate exhibit a diameter-independent nominal frictional shear stress of 0.48 MPa,and this provides a benchmark for studying how the surface topography of graphite influences nanowire friction.Nanowires on the HOPG substrate present a significant diameter-dependent frictional shear stress,increasing from 0.25 to 2.78 MPa with the decrease of nanowire diameter from 485 to 142 nm.The waviness of HOPG has a limited effect on the nanowire friction,as a nanowire can fully conform to the substrate.The surface steps on the HOPG can significantly enhance the nanowire friction and lead to a much higher frictional shear stress than that on NG due to mechanical blocking and the presence of a Schwoebel barrier at step edges.The surface steps,however,can also generate small wedge-shaped gaps between a nanowire and substrate,and thus reduce the nanowire friction.With the decrease in nanowire diameter,the capacity for the nanowire to better conform to the substrate reduces the length of the wedge-shaped gaps,leading to the observed increase in nanowire friction.The results have improved our understanding of the unique friction behaviour of nanowires.Such an improved understanding is expected to benefit the design and operation of nanowire-friction-based devices,including bio-inspired fibrillar adhesives,soft grippers,rotary nanomotors,and triboelectric nanogenerators.