A complex biological system is often required to study the myriad of host-pathogen interactions associated with infectious diseases, especially since the current basis of biology has reached the molecular level. The u...A complex biological system is often required to study the myriad of host-pathogen interactions associated with infectious diseases, especially since the current basis of biology has reached the molecular level. The use of animal models is important for understanding the very complex temporal relationships that occur in infectious disease involving the body, its neuroendocrine and immune systems and the infectious organism. Because of these complex interactions, the choice of animal model must be a thoughtful and clearly defined process in order to provide relevant, translatable scientific data and to ensure the most beneficial use of the animals. While many animals respond similarly to humans from physiological, pathological, and therapeutic perspectives, there are also significant species-by-species differences. A welldesigned animal model requires a thorough understanding of similarities and differences in the responses between humans and animals and incorporates that knowledge into the goals of the study. Determining the intrinsic and extrinsic factors associated with the disease and creating a biological information matrix to compare the animal model and human disease courses is a useful tool to help choose the appropriate animal model. Confidence in the correlation of results from a model to the human disease can be achieved only if the relationship of the model to the human disease is well understood.展开更多
文摘A complex biological system is often required to study the myriad of host-pathogen interactions associated with infectious diseases, especially since the current basis of biology has reached the molecular level. The use of animal models is important for understanding the very complex temporal relationships that occur in infectious disease involving the body, its neuroendocrine and immune systems and the infectious organism. Because of these complex interactions, the choice of animal model must be a thoughtful and clearly defined process in order to provide relevant, translatable scientific data and to ensure the most beneficial use of the animals. While many animals respond similarly to humans from physiological, pathological, and therapeutic perspectives, there are also significant species-by-species differences. A welldesigned animal model requires a thorough understanding of similarities and differences in the responses between humans and animals and incorporates that knowledge into the goals of the study. Determining the intrinsic and extrinsic factors associated with the disease and creating a biological information matrix to compare the animal model and human disease courses is a useful tool to help choose the appropriate animal model. Confidence in the correlation of results from a model to the human disease can be achieved only if the relationship of the model to the human disease is well understood.