The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by H...The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by HN for medical diagnosis and treatment. Research issues including the wave frequency, power intensity, reflections and scattering, and penetration depths are of important considerations to be incorporated into the research study. In this study, computer simulation for the EM exposure to HN was studied for the purpose of determining the upper limits of the electric and magnetic field intensities, power consumption, reflections and transmissions, and the change in temperature resulting from the power absorption by human neurons. Both high frequency structural simulators (HFSS) from ANSYS software, and COMSOL multi-physics were used for the simulation of the EM transmissions and reflections, and the temperature profile within the cells, respectively. For the temperature profile estimation, the study considers an electrical source of 0.5 watt input power, 64 MHz. The EM simulation was looking into the uniformity of the fields within the sample cells. The size of the waveguide was set to be appropriate for a small animal model to be conducted in the future. The incident power was fully transmitted throughout the waveguide, and less than 1% reflections were observed from the simulation. The minimum reflected power near the sample under investigation was found to be with negligible reflected field strengths. The temperature profile resulting from the COMSOL simulation was found to be near 0.25 m°K, indicating no change in temperature on the neuro cells under the EM exposure. The paper details the simulation results for the EM response determined by HFSS, and temperature profile simulated by COMSOL.展开更多
A novel imaging approach utilizing microwave scattering was proposed in order to analyze various properties of bone. Microwave frequencies of 900 MHz, 1 GHz, and 2.4 GHz were used during this study. This investigation...A novel imaging approach utilizing microwave scattering was proposed in order to analyze various properties of bone. Microwave frequencies of 900 MHz, 1 GHz, and 2.4 GHz were used during this study. This investigation’s objectives were to emphasize characteristics of abnormalities in human bones and to detect fine fractures through contrasts in bone density. The finite element method (FEM) presented here is generated from COMSOL software at different frequencies. The study identified the optimum transmission directed at the interface layers from an external microwave source. It was found that approximately 900 MHz microwave power was ideal for this application. This can be attributed to the penetration depth where the power dissipation is analyzed based on bone condition. The microwave energy was generated from an exterior antenna that was interfaced, via catheter, to skeletal bone. The power transmitted to bone was converted into thermal energy, and has led to a visible temperature distribution pattern, which reflects the bone density level, and accordingly, the type of bone under investigation. The electrical and thermal properties, including the dielectric permittivity, thermal conductivity, and heat flux absorption through the bone substance, have great implications on the FEM distribution. The boundary conditions using tangential matching of field components at the tissue-bone interface were incorporated into the finite element method. The average power from the electromagnetic fields (estimated from the Poynting’s vector, P = E*H), was assumed to be fully absorbed as heat due to the conductivity of the bone material. Furthermore, microwave energy was applied as a delta function and the thermal distributions have been analyzed in order to distinguish between normal healthy bone and bones with structural or metabolic abnormalities. The latter was emulated by different bone density to contrast normal bone anatomy. The FEM simulation suggests that thermography microwave imaging could be a good tool for bone characterization in order to detect skeletal abnormalities. This approach could be advantageous over other existing methods such as X-ray imaging.展开更多
<strong>Introduction</strong><strong>:</strong> Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patie...<strong>Introduction</strong><strong>:</strong> Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans. Electromagnetic (EM) waves may provide a more sensitive medical imaging modality to provide objective data in the diagnosis of mTBI. <strong>Methods:</strong> COMSOL simulation software was utilized to mimic the anatomy of the human skull including skin, cranium, cerebrospinal fluid (CSF), gray-matter tissue of the brain, and microvasculature within the neural tissue. The effects of penetrating EM waves were simulated using the finite element analysis software and results were generated to identify feasibility and efficacy. Frequency ranges from 7 GHz to 15 GHz were considered, with 0.6 and 1 W power applied.<strong> Results:</strong> Variations between the differing frequency levels generated different energy levels within the neural tissue—particularly when comparing normal microvasculature versus hemorrhage from microvasculature. This difference within the neural tissue was subsequently identified, via simulation, serving as a potential imaging modality for future work. <strong>Conclusion: </strong>The use of electromagnetic imaging of the brain after concussive events may play a role in future mTBI diagnosis. Utilizing the proper depth frequency and wavelength, neural tissue and microvascular trauma may be identified utilizing finite element analysis.展开更多
The possible features of photo acoustic tomography (PAT) in medical research and practice, including applications in orthopedics and cardiovascular areas, among others, have motivated the emphasis of this study toward...The possible features of photo acoustic tomography (PAT) in medical research and practice, including applications in orthopedics and cardiovascular areas, among others, have motivated the emphasis of this study towards human bone applications. PAT modality is an emerging approach that features safety and greater penetration depth compared to other modalities such as X-ray and microwave. The high-resolution images and safety related to PAT modality are attributed to the scattering properties of ultrasound as compared to light within a human tissue. PAT brought considerable attention from the medical research community to target optimum parameters for practical models. It includes source frequency penetration depth, dynamic temperature responses, and acoustic pressure throughout the multilayer structure of the human tissues. In this work, the acoustic pressure and the bio-heat equations were analyzed for power distribution and penetration depth, covering the basic principles of PAT within the human body. Three sources with three dif-ferent heat energy pulses;1 s, 3 s, and 5 s, were considered in order to study the rise time and fall time dynamic responses inside the bone material. The computer simulation was designed to simu-late the human tissue at 1 MHz with an acoustic pressure of 1 MPa. A penetration depth for all sources was estimated to be near 4 cm with a temperature change from 0.5 K to near 1 K over a pe-riod of 10 s. The simulation data provide promising results when taken to the next level of practical implementation. The 4 cm penetration depth range may enable the researchers to investigate mul-tiple layers within the human body, leading to non-invasive deterministic approach. The simulation presented here will serve as a pilot study towards photoacoustic applications in orthopedic applica-tions.展开更多
Background: The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects o...Background: The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects on human health. As a result, investigations have been driven by the potential for therapeutic applications, as well as concern for any possible negative health implications of these EM energies [1-4]. Recent results have indicated specific tuning of experimental and clinical RF exposure may lead to their clinical application toward beneficial health outcomes [5]. Method: In the current study, a mathematical and computer simulation model to analyze a specific RF-EMF exposure on a human head model was developed. Impetus for this research was derived from results of our previous experiments which revealed that Repeated Electromagnetic Field Stimulation (REMFS) decreased the toxic levels of beta amyloid (Aβ) in neuronal cells, thereby suggesting a new potential therapeutic strategy for the treatment of Alzheimer’s disease (AD). Throughout development of the proposed device, experimental variables such as the EM frequency range, specific absorption rate (SAR), penetration depth, and innate properties of different tissues have been carefully considered. Results: RF-EMF exposure to the human head phantom was performed utilizing a Yagi-Uda antenna type possessing high gain (in the order of 10 dbs) at a frequency of 64 MHz and SAR of 0.6 W/Kg. In order to maximize the EM power transmission in one direction, directors were placed in front of the driven element and reflectors were placed behind the driven element. So as to strategically direct the EM field into the center of the brain tissue, while providing field linearity, our analysis considered the field distribution for one versus four antennas. Within the provided dimensions of a typical human brain, results of the Bioheat equation within COMSOL Multiphysics version 5.2a software demonstrated less than a 1 m°K increase from the absorbed EM power.展开更多
We have demonstrated a successful computer model utilizing ANSIS software that is verified with a practical model using Infrared (IR) sensors. The simulation model incorporates the three heat transfer coefficients: co...We have demonstrated a successful computer model utilizing ANSIS software that is verified with a practical model using Infrared (IR) sensors. The simulation model incorporates the three heat transfer coefficients: conduction, convection, and radiation. While the conduction component was a major contributor to the simulation model, the other two coefficients have added to the accuracy and precision of the model. Convection heat allows for the influence of blood flow within the study, while the radiation aspect, sensed through IR sensors, links the practical model of the study. This study also compares simulation data with the applied model generated from IR probe sensors. These sensors formed an IR scanner that moved via servo mechanical system, tracking the temperature distribution within and around the thyroid gland. These data were analyzed and processed to produce a thermal image of the thyroid gland. The acquired data were then compared with an Iodine uptake scan for the same patients.展开更多
文摘The impact of the electromagnetic waves (EM) on human neurons (HN) has been under investigation for decades, in efforts to understand the impact of cell phones (radiation) on human health, or radiation absorption by HN for medical diagnosis and treatment. Research issues including the wave frequency, power intensity, reflections and scattering, and penetration depths are of important considerations to be incorporated into the research study. In this study, computer simulation for the EM exposure to HN was studied for the purpose of determining the upper limits of the electric and magnetic field intensities, power consumption, reflections and transmissions, and the change in temperature resulting from the power absorption by human neurons. Both high frequency structural simulators (HFSS) from ANSYS software, and COMSOL multi-physics were used for the simulation of the EM transmissions and reflections, and the temperature profile within the cells, respectively. For the temperature profile estimation, the study considers an electrical source of 0.5 watt input power, 64 MHz. The EM simulation was looking into the uniformity of the fields within the sample cells. The size of the waveguide was set to be appropriate for a small animal model to be conducted in the future. The incident power was fully transmitted throughout the waveguide, and less than 1% reflections were observed from the simulation. The minimum reflected power near the sample under investigation was found to be with negligible reflected field strengths. The temperature profile resulting from the COMSOL simulation was found to be near 0.25 m°K, indicating no change in temperature on the neuro cells under the EM exposure. The paper details the simulation results for the EM response determined by HFSS, and temperature profile simulated by COMSOL.
文摘A novel imaging approach utilizing microwave scattering was proposed in order to analyze various properties of bone. Microwave frequencies of 900 MHz, 1 GHz, and 2.4 GHz were used during this study. This investigation’s objectives were to emphasize characteristics of abnormalities in human bones and to detect fine fractures through contrasts in bone density. The finite element method (FEM) presented here is generated from COMSOL software at different frequencies. The study identified the optimum transmission directed at the interface layers from an external microwave source. It was found that approximately 900 MHz microwave power was ideal for this application. This can be attributed to the penetration depth where the power dissipation is analyzed based on bone condition. The microwave energy was generated from an exterior antenna that was interfaced, via catheter, to skeletal bone. The power transmitted to bone was converted into thermal energy, and has led to a visible temperature distribution pattern, which reflects the bone density level, and accordingly, the type of bone under investigation. The electrical and thermal properties, including the dielectric permittivity, thermal conductivity, and heat flux absorption through the bone substance, have great implications on the FEM distribution. The boundary conditions using tangential matching of field components at the tissue-bone interface were incorporated into the finite element method. The average power from the electromagnetic fields (estimated from the Poynting’s vector, P = E*H), was assumed to be fully absorbed as heat due to the conductivity of the bone material. Furthermore, microwave energy was applied as a delta function and the thermal distributions have been analyzed in order to distinguish between normal healthy bone and bones with structural or metabolic abnormalities. The latter was emulated by different bone density to contrast normal bone anatomy. The FEM simulation suggests that thermography microwave imaging could be a good tool for bone characterization in order to detect skeletal abnormalities. This approach could be advantageous over other existing methods such as X-ray imaging.
文摘<strong>Introduction</strong><strong>:</strong> Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans. Electromagnetic (EM) waves may provide a more sensitive medical imaging modality to provide objective data in the diagnosis of mTBI. <strong>Methods:</strong> COMSOL simulation software was utilized to mimic the anatomy of the human skull including skin, cranium, cerebrospinal fluid (CSF), gray-matter tissue of the brain, and microvasculature within the neural tissue. The effects of penetrating EM waves were simulated using the finite element analysis software and results were generated to identify feasibility and efficacy. Frequency ranges from 7 GHz to 15 GHz were considered, with 0.6 and 1 W power applied.<strong> Results:</strong> Variations between the differing frequency levels generated different energy levels within the neural tissue—particularly when comparing normal microvasculature versus hemorrhage from microvasculature. This difference within the neural tissue was subsequently identified, via simulation, serving as a potential imaging modality for future work. <strong>Conclusion: </strong>The use of electromagnetic imaging of the brain after concussive events may play a role in future mTBI diagnosis. Utilizing the proper depth frequency and wavelength, neural tissue and microvascular trauma may be identified utilizing finite element analysis.
文摘The possible features of photo acoustic tomography (PAT) in medical research and practice, including applications in orthopedics and cardiovascular areas, among others, have motivated the emphasis of this study towards human bone applications. PAT modality is an emerging approach that features safety and greater penetration depth compared to other modalities such as X-ray and microwave. The high-resolution images and safety related to PAT modality are attributed to the scattering properties of ultrasound as compared to light within a human tissue. PAT brought considerable attention from the medical research community to target optimum parameters for practical models. It includes source frequency penetration depth, dynamic temperature responses, and acoustic pressure throughout the multilayer structure of the human tissues. In this work, the acoustic pressure and the bio-heat equations were analyzed for power distribution and penetration depth, covering the basic principles of PAT within the human body. Three sources with three dif-ferent heat energy pulses;1 s, 3 s, and 5 s, were considered in order to study the rise time and fall time dynamic responses inside the bone material. The computer simulation was designed to simu-late the human tissue at 1 MHz with an acoustic pressure of 1 MPa. A penetration depth for all sources was estimated to be near 4 cm with a temperature change from 0.5 K to near 1 K over a pe-riod of 10 s. The simulation data provide promising results when taken to the next level of practical implementation. The 4 cm penetration depth range may enable the researchers to investigate mul-tiple layers within the human body, leading to non-invasive deterministic approach. The simulation presented here will serve as a pilot study towards photoacoustic applications in orthopedic applica-tions.
文摘Background: The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects on human health. As a result, investigations have been driven by the potential for therapeutic applications, as well as concern for any possible negative health implications of these EM energies [1-4]. Recent results have indicated specific tuning of experimental and clinical RF exposure may lead to their clinical application toward beneficial health outcomes [5]. Method: In the current study, a mathematical and computer simulation model to analyze a specific RF-EMF exposure on a human head model was developed. Impetus for this research was derived from results of our previous experiments which revealed that Repeated Electromagnetic Field Stimulation (REMFS) decreased the toxic levels of beta amyloid (Aβ) in neuronal cells, thereby suggesting a new potential therapeutic strategy for the treatment of Alzheimer’s disease (AD). Throughout development of the proposed device, experimental variables such as the EM frequency range, specific absorption rate (SAR), penetration depth, and innate properties of different tissues have been carefully considered. Results: RF-EMF exposure to the human head phantom was performed utilizing a Yagi-Uda antenna type possessing high gain (in the order of 10 dbs) at a frequency of 64 MHz and SAR of 0.6 W/Kg. In order to maximize the EM power transmission in one direction, directors were placed in front of the driven element and reflectors were placed behind the driven element. So as to strategically direct the EM field into the center of the brain tissue, while providing field linearity, our analysis considered the field distribution for one versus four antennas. Within the provided dimensions of a typical human brain, results of the Bioheat equation within COMSOL Multiphysics version 5.2a software demonstrated less than a 1 m°K increase from the absorbed EM power.
文摘We have demonstrated a successful computer model utilizing ANSIS software that is verified with a practical model using Infrared (IR) sensors. The simulation model incorporates the three heat transfer coefficients: conduction, convection, and radiation. While the conduction component was a major contributor to the simulation model, the other two coefficients have added to the accuracy and precision of the model. Convection heat allows for the influence of blood flow within the study, while the radiation aspect, sensed through IR sensors, links the practical model of the study. This study also compares simulation data with the applied model generated from IR probe sensors. These sensors formed an IR scanner that moved via servo mechanical system, tracking the temperature distribution within and around the thyroid gland. These data were analyzed and processed to produce a thermal image of the thyroid gland. The acquired data were then compared with an Iodine uptake scan for the same patients.