Laser additive manufacturing(LAM) of tungsten carbide metal matrix composites(MMCs) has been evaluated for surface modification of hot die forming tools,cutting edges,glass tooling,extrusion mandrels,and other abrasiv...Laser additive manufacturing(LAM) of tungsten carbide metal matrix composites(MMCs) has been evaluated for surface modification of hot die forming tools,cutting edges,glass tooling,extrusion mandrels,and other abrasive wear applications.This work focuses on transitions from tool steels to MMCs through a single pass laser powder deposition operation.Issues related to the application of various metal powders and carbides used include surface hardness,porosity,cracking,and dilution.These issues along with factory results that were obtained during this project are discussed.展开更多
基金Supported by the U.S. Department of Energy(DOE),Office of Industrial Technology under contract DE-PS0703ID14425:Industrial Materials for the Future Program and through contracts with Spirex Corporation and Owens-Illinois
文摘Laser additive manufacturing(LAM) of tungsten carbide metal matrix composites(MMCs) has been evaluated for surface modification of hot die forming tools,cutting edges,glass tooling,extrusion mandrels,and other abrasive wear applications.This work focuses on transitions from tool steels to MMCs through a single pass laser powder deposition operation.Issues related to the application of various metal powders and carbides used include surface hardness,porosity,cracking,and dilution.These issues along with factory results that were obtained during this project are discussed.