A novel fuzzy logic compensating (FLC) scheme is proposed to enhance theconventional computed-torque control (CTC) structure of manipulators The control scheme is based onthe combination of a classical CTC and FLC, an...A novel fuzzy logic compensating (FLC) scheme is proposed to enhance theconventional computed-torque control (CTC) structure of manipulators The control scheme is based onthe combination of a classical CTC and FLC, and the resulting control scheme has a simple structurewith improved robustness. Further improvement of the performance of the FLC scheme is achievedthrough automatic tuning of a weight parameter a leading to a self-tuning fuzzy logic compensator,so the system uncertainty can be compensated very well. By taking into account the full nonlinearnature of the robotic dynamics, the overall closed-loop system is shown to be asymptotically stable.Experimental results demonstrate the effectiveness of the computed torque and fuzzy compensationscheme to control a manipulator during a trajectory tracking task.展开更多
文摘A novel fuzzy logic compensating (FLC) scheme is proposed to enhance theconventional computed-torque control (CTC) structure of manipulators The control scheme is based onthe combination of a classical CTC and FLC, and the resulting control scheme has a simple structurewith improved robustness. Further improvement of the performance of the FLC scheme is achievedthrough automatic tuning of a weight parameter a leading to a self-tuning fuzzy logic compensator,so the system uncertainty can be compensated very well. By taking into account the full nonlinearnature of the robotic dynamics, the overall closed-loop system is shown to be asymptotically stable.Experimental results demonstrate the effectiveness of the computed torque and fuzzy compensationscheme to control a manipulator during a trajectory tracking task.