Hurricane-induced hazards can result in significant damage to the built environment cascading into major impacts to the households,social institutions,and local economy.Although quantifying physical impacts of hurrica...Hurricane-induced hazards can result in significant damage to the built environment cascading into major impacts to the households,social institutions,and local economy.Although quantifying physical impacts of hurricane-induced hazards is essential for risk analysis,it is necessary but not sufficient for community resilience planning.While there have been several studies on hurricane risk and recovery assessment at the building-and community-level,few studies have focused on the nexus of coupled physical and social disruptions,particularly when char-acterizing recovery in the face of coastal multi-hazards.Therefore,this study presents an integrated approach to quantify the socio-physical disruption following hurricane-induced multi-hazards(e.g.,wind,storm surge,wave)by considering the physical damage and functionality of the built environment along with the population dynamics over time.Specifically,high-resolution fragility models of buildings,and power and transportation infrastructures capture the combined impacts of hurricane loading on the built environment.Beyond simulat-ing recovery by tracking infrastructure network performance metrics,such as access to essential facilities,this coupled socio-physical approach affords projection of post-hazard population dislocation and temporal evolution of housing and household recovery constrained by the building and infrastructure recovery.The results reveal the relative importance of multi-hazard consideration in the damage and recovery assessment of communities,along with the role of interdependent socio-physical system modeling when evaluating metrics such as housing recovery or the need for emergency shelter.Furthermore,the methodology presented here provides a foundation for resilience-informed decisions for coastal communities.展开更多
The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers,which is expected to further increase with the effects of climate cha...The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers,which is expected to further increase with the effects of climate change.This study considers the impacts that sea level rise projections might have on the annual flood risk to coastal refineries,and how regional disruptions propagate across the network.Both the annual regional risk in terms of expected production disruption under a range of climate scenarios,as well as the expected production disruption due to a major flood event impacting refining hubs of high importance are assessed throughout the 21 st century.These risks are propagated across the network to model the global impact of coastal flood-induced refining disruptions.This analysis provides insights on the relative risks that different climate scenarios and flood events pose globally,informing potential mitigation and adaptation needs of critical facilities.Due to the highly interconnected nature of the global petroleum product distribution network,these results highlight the need for mitigation considerations for even regions with low domestic production disruption risk due to coastal flood hazards,as disruptions in remote regions can have cascading consequences resulting in significant disruption to petroleum product supply around the world.Furthermore,such results can inform decisions regarding technology transitions or energy diversification in light of the new understanding of climate risks to coastal refineries and the global petroleum distribution network.展开更多
基金the National Institute of Standards and Technology(NIST)Center of Excellence for Risk-Based Community Resilience Planning under Cooperative Agreement 70NANB20H008 and 70NANB15H044 between NISTColorado State University.The contents expressed in this paper are the views of the authors and do not necessarily represent the opinions or views of NIST or the U.S Department of Commerce.
文摘Hurricane-induced hazards can result in significant damage to the built environment cascading into major impacts to the households,social institutions,and local economy.Although quantifying physical impacts of hurricane-induced hazards is essential for risk analysis,it is necessary but not sufficient for community resilience planning.While there have been several studies on hurricane risk and recovery assessment at the building-and community-level,few studies have focused on the nexus of coupled physical and social disruptions,particularly when char-acterizing recovery in the face of coastal multi-hazards.Therefore,this study presents an integrated approach to quantify the socio-physical disruption following hurricane-induced multi-hazards(e.g.,wind,storm surge,wave)by considering the physical damage and functionality of the built environment along with the population dynamics over time.Specifically,high-resolution fragility models of buildings,and power and transportation infrastructures capture the combined impacts of hurricane loading on the built environment.Beyond simulat-ing recovery by tracking infrastructure network performance metrics,such as access to essential facilities,this coupled socio-physical approach affords projection of post-hazard population dislocation and temporal evolution of housing and household recovery constrained by the building and infrastructure recovery.The results reveal the relative importance of multi-hazard consideration in the damage and recovery assessment of communities,along with the role of interdependent socio-physical system modeling when evaluating metrics such as housing recovery or the need for emergency shelter.Furthermore,the methodology presented here provides a foundation for resilience-informed decisions for coastal communities.
基金financial support of this research by the Center of Excellence for Resilience of Industrial&Energy Infrastructure(CERISE)at Rice University.
文摘The global petroleum distribution network already faces a significant threat of disruption due to annual coastal flooding of major refining centers,which is expected to further increase with the effects of climate change.This study considers the impacts that sea level rise projections might have on the annual flood risk to coastal refineries,and how regional disruptions propagate across the network.Both the annual regional risk in terms of expected production disruption under a range of climate scenarios,as well as the expected production disruption due to a major flood event impacting refining hubs of high importance are assessed throughout the 21 st century.These risks are propagated across the network to model the global impact of coastal flood-induced refining disruptions.This analysis provides insights on the relative risks that different climate scenarios and flood events pose globally,informing potential mitigation and adaptation needs of critical facilities.Due to the highly interconnected nature of the global petroleum product distribution network,these results highlight the need for mitigation considerations for even regions with low domestic production disruption risk due to coastal flood hazards,as disruptions in remote regions can have cascading consequences resulting in significant disruption to petroleum product supply around the world.Furthermore,such results can inform decisions regarding technology transitions or energy diversification in light of the new understanding of climate risks to coastal refineries and the global petroleum distribution network.