The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynom...The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.展开更多
基金Supported by the US Department of Energy under the PSAAP Program
文摘The Burgers' equation with uncertain initial and boundary conditions is approximated using a Polynomial Chaos Expansion (PCE) approach where the solution is represented as a series of stochastic, orthogonal polynomials. The resulting truncated PCE system is solved using a novel numerical discretization method based on spatial derivative operators satisfying the summation by parts property and weak boundary conditions to ensure stability. The resulting PCE solution yields an accurate quantitative description of the stochastic evolution of the system, provided that appropriate boundary conditions are available. The specification of the boundary data is shown to influence the solution; we will discuss the problematic implications of the lack of precisely characterized boundary data and possible ways of imposing stable and accurate boundary conditions.