Three new multi-step one-pot processes for high-yielding cyclohexanecarbonitrile synthesis starting from cyclohexanone were developed for industrial application. In contrast to the current synthetic process, all of th...Three new multi-step one-pot processes for high-yielding cyclohexanecarbonitrile synthesis starting from cyclohexanone were developed for industrial application. In contrast to the current synthetic process, all of the processes described were designed to proceed completely in methanol as a uniform solvent and the key oxidation step can be realized either as stoichiometric or catalytic. Atom efficiency of processes is relatively advanced with high regioselectivity, reaction by-products are either from environmental pool—carbon dioxide and nitrogen—or they can be reused—sodium chloride. Solvent—methanol—and other auxiliaries—cyclohexane, copper catalyst—can be reused after recycling as well. EcoScale for all three designed processes was evaluated and compared with current synthesis described in the past. Green chemistry metrics, including newly introduced evaluative tool—Sustainability Index of the Synthesis (SIS), were applied to evaluate design of described one-pot syntheses.展开更多
文摘Three new multi-step one-pot processes for high-yielding cyclohexanecarbonitrile synthesis starting from cyclohexanone were developed for industrial application. In contrast to the current synthetic process, all of the processes described were designed to proceed completely in methanol as a uniform solvent and the key oxidation step can be realized either as stoichiometric or catalytic. Atom efficiency of processes is relatively advanced with high regioselectivity, reaction by-products are either from environmental pool—carbon dioxide and nitrogen—or they can be reused—sodium chloride. Solvent—methanol—and other auxiliaries—cyclohexane, copper catalyst—can be reused after recycling as well. EcoScale for all three designed processes was evaluated and compared with current synthesis described in the past. Green chemistry metrics, including newly introduced evaluative tool—Sustainability Index of the Synthesis (SIS), were applied to evaluate design of described one-pot syntheses.