期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Genetic engineering and lignin biosynthetic regulation in forest tree species 被引量:1
1
作者 唐巍 janet ogbon Aquilla McCoy 《Journal of Forestry Research》 SCIE CAS CSCD 2001年第2期75-83,146,共9页
Genetic engineering of forest tree species is regarded as a strategy to reduce worldwide pressure on natural forests, to conserve genetic resources and ameliorate stress on global climate, and to meet growing demand f... Genetic engineering of forest tree species is regarded as a strategy to reduce worldwide pressure on natural forests, to conserve genetic resources and ameliorate stress on global climate, and to meet growing demand for forest wood and timber products. Genetic engineering approaches toward the control or management of fungal pathogens, arthropod herbivores, bacterial and viral diseases, the use of pest resistance genes, and weed competitors are being studied. Although the production of transgenic trees is relatively recent and only a few species have been successfully genetically engineered in forest tree species, very useful and valuable information is available on the application of transgenic trees. Genes involved in important agricultural traits such as herbicide resistance, insect resistance, and wood quality have been isolated and have been used to genetically engineer trees. New technologies of plant molecular biology and genomics now make it possible high-efficient genetic improvement of forest trees. Genetic engineering promises to expand greatly the potential for genetic manipulation as new genes of commercial interest are discovered and utilized. Lignification is a process essential to the nature and evolution of vascular plants that is still poorly understood, even though it has been studied for more than a century. Recent studies on mutant and transgenic plants indicate that lignification may be far more flexible than previously realized. Rines with a mutation affecting the biosynthesis of the major lignin precursor, coniferyl alcohol, show a high level of an unusual subunit, dihydroconiferyl alcohol. It is also unusual as a plant polymer in that there are no plant enzymes for its degradation. These results have significant implications regarding the tradiational definition of lignin, and highlight the need for a better understanding of the lignin precursor biosynthetic pathway. In this review, we describe the progress made recently in genetic engineering of forest tree species. 展开更多
关键词 Transgenic trees Genetic engineering LIGNIFICATION Gene expression regulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部