期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Experimental and computational optimization of Prussian blue analogues as high-performance cathodes for sodium-ion batteries:A review
1
作者 Gwangeon Oh Junghoon Kim +4 位作者 Shivam Kansara Hyokyeong Kang Hun-Gi Jung Yang-Kook Sun jang-yeon hwang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期627-662,I0015,共37页
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t... In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems. 展开更多
关键词 Prussian blue analogs(PBAs) Sodium ion batteries(SIBs) Structural engineering Electrolyte modifications Experiments Density functional theory(DFT)
下载PDF
Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries
2
作者 Wonseok Ko Seokjin Lee +7 位作者 Hyunyoung Park Jungmin Kang Jinho Ahn Yongseok Lee Gwangeon Oh Jung-Keun Yoo jang-yeon hwang Jongsoon Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期81-93,共13页
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ... Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems. 展开更多
关键词 cathodes first-principles calculations layered-type oxide materials potassium-ion batteries structural stabilization
下载PDF
Long-lasting,reinforced electrical networking in a high-loading Li_(2)S cathode for high-performance lithium–sulfur batteries 被引量:1
3
作者 Hun Kim Kyeong-Jun Min +4 位作者 Sangin Bang jang-yeon hwang Jung Ho Kim Chong SYoon Yang-Kook Sun 《Carbon Energy》 SCIE CSCD 2023年第8期1-14,共14页
Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein... Realizing a lithium sulfide(Li_(2)S)cathode with both high energy density and a long lifespan requires an innovative cathode design that maximizes electrochemical performance and resists electrode deterioration.Herein,a high-loading Li_(2)S-based cathode with micrometric Li_(2)S particles composed of two-dimensional graphene(Gr)and one-dimensional carbon nanotubes(CNTs)in a compact geometry is developed,and the role of CNTs in stable cycling of high-capacity Li–S batteries is emphasized.In a dimensionally combined carbon matrix,CNTs embedded within the Gr sheets create robust and sustainable electron diffusion pathways while suppressing the passivation of the active carbon surface.As a unique point,during the first charging process,the proposed cathode is fully activated through the direct conversion of Li_(2)S into S_(8) without inducing lithium polysulfide formation.The direct conversion of Li_(2)S into S_(8) in the composite cathode is ubiquitously investigated using the combined study of in situ Raman spectroscopy,in situ optical microscopy,and cryogenic transmission electron microscopy.The composite cathode demonstrates unprecedented electrochemical properties even with a high Li_(2)S loading of 10 mg cm^(–2);in particular,the practical and safe Li–S full cell coupled with a graphite anode shows ultra-long-term cycling stability over 800 cycles. 展开更多
关键词 carbon nanotubes electrical network high energy high loading Li_(2)S cathode lithium-sulfur batteries
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部