Value-added applications of niobium (Nb) microalloyed steels continue to be developed for commercial implementation to meet increased material demands and improved properties for 21st century structural applications. ...Value-added applications of niobium (Nb) microalloyed steels continue to be developed for commercial implementation to meet increased material demands and improved properties for 21st century structural applications. These applications demand Nb-bearing steels that deliver improved toughness, fracture and fire resistance and weldability. Such applications include medium and jumbo beam, boiler, bridge, container, heavy equipment, long product, pressure vessel, ship, storage tank and windtower applications. Steel producers are challenged to develop microalloyed steel grades that cost effectively meet end user demands for higher strength at thinner cross sections, better low temperature toughness to resist brittle fracture in building, pressure vessel and ship structures, sustain higher loads per unit area in earthquake and hurricane zone product applications, demonstrate improved fire-resistance in buildings, bridges and tunnels and provide overall improved weldability. Niobium is often a key element to achieve these results. This paper will discuss Nb market opportunities and key operational practices required to successfully melt, cast and roll these high strength steel grades. Niobium process metallurgy is important to leverage the ability of niobium to obtain ultra-fine grain, homogeneous structural steel microstructures with superior mechanical properties. The process metallurgy, physical metallurgy and resultant properties are significantly determined by mill capabilities, mill practices, operational understanding and the culture of the steel mill. The optimal combination and implementation aspects that are unique to each mill we call metallurgical operational integration (MOI) . MOI is the bridge that links the product requirements to mill capability and process implementation.展开更多
With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw materi...With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw material usage and the carbon footprint.The conservation and more efficient use of ironmaking and steelmaking raw materials is an urgent issue for steel producers globally.Recently-developed Nb-microalloyed steel applications provide a more effective product design and reduce CO 2 emissions and energy consumption per tonne of steel.A sustainability structural steelstudy presents the positive cost and reduced environmental impact of Nb-microalloyed steels.This analysis compares the CO 2 emission reduction and energy savings in the steelmaking process melted in both the Basic Oxygen Furnace (BOF) and the Electric Arc Furnace (EAF).Nb-microalloyed structural steels offer the opportunity to reduce the total weight of a given structure compared to a non-microalloyed steel construction.Generally,one considers the savings associated with less material and lower construction costs.In addition,there is an environmental benefit in the reduction in emissions (kilograms of CO 2) and less energy consumption (GJ) due to the fact that less steel is melted.Plus,there are lighter sections and less material weight in the final end user design which reduces transportation and fabrication costs.A forecasted trend is presented which introduces an increased usage of microalloyed steel grades to replace traditional commodity-type non-alloyed higher carbon-manganese grades for environmental benefits and significant cost reduction.展开更多
文摘Value-added applications of niobium (Nb) microalloyed steels continue to be developed for commercial implementation to meet increased material demands and improved properties for 21st century structural applications. These applications demand Nb-bearing steels that deliver improved toughness, fracture and fire resistance and weldability. Such applications include medium and jumbo beam, boiler, bridge, container, heavy equipment, long product, pressure vessel, ship, storage tank and windtower applications. Steel producers are challenged to develop microalloyed steel grades that cost effectively meet end user demands for higher strength at thinner cross sections, better low temperature toughness to resist brittle fracture in building, pressure vessel and ship structures, sustain higher loads per unit area in earthquake and hurricane zone product applications, demonstrate improved fire-resistance in buildings, bridges and tunnels and provide overall improved weldability. Niobium is often a key element to achieve these results. This paper will discuss Nb market opportunities and key operational practices required to successfully melt, cast and roll these high strength steel grades. Niobium process metallurgy is important to leverage the ability of niobium to obtain ultra-fine grain, homogeneous structural steel microstructures with superior mechanical properties. The process metallurgy, physical metallurgy and resultant properties are significantly determined by mill capabilities, mill practices, operational understanding and the culture of the steel mill. The optimal combination and implementation aspects that are unique to each mill we call metallurgical operational integration (MOI) . MOI is the bridge that links the product requirements to mill capability and process implementation.
文摘With the growing concern for the environmental impact of greenhouse gases and the rapid depletion of important resources,the use of Nb-bearing steels for advanced high strength steel applications can reduce raw material usage and the carbon footprint.The conservation and more efficient use of ironmaking and steelmaking raw materials is an urgent issue for steel producers globally.Recently-developed Nb-microalloyed steel applications provide a more effective product design and reduce CO 2 emissions and energy consumption per tonne of steel.A sustainability structural steelstudy presents the positive cost and reduced environmental impact of Nb-microalloyed steels.This analysis compares the CO 2 emission reduction and energy savings in the steelmaking process melted in both the Basic Oxygen Furnace (BOF) and the Electric Arc Furnace (EAF).Nb-microalloyed structural steels offer the opportunity to reduce the total weight of a given structure compared to a non-microalloyed steel construction.Generally,one considers the savings associated with less material and lower construction costs.In addition,there is an environmental benefit in the reduction in emissions (kilograms of CO 2) and less energy consumption (GJ) due to the fact that less steel is melted.Plus,there are lighter sections and less material weight in the final end user design which reduces transportation and fabrication costs.A forecasted trend is presented which introduces an increased usage of microalloyed steel grades to replace traditional commodity-type non-alloyed higher carbon-manganese grades for environmental benefits and significant cost reduction.