The problem of end-face cavity formation in parts produced by cross-wedge rolling was studied in order to reduce material consumption.The cavity depth was measured by the displacemern method.Twenty-one different cases...The problem of end-face cavity formation in parts produced by cross-wedge rolling was studied in order to reduce material consumption.The cavity depth was measured by the displacemern method.Twenty-one different cases of rolling were analysed by finile element method to determine the effects of process parameters such as the wedge tool angle,the temperature of material,the tool velocity and the reduction ratio on the depth of end-face cavities.Relationships between these parameters are examined in order to establish depe ndencies enabling quick and simple selection of a con cavity allowance in order to remove the cavities.The equations for calculating the con cavity allowance were verified in an experimental process for manufacturing ball pins with the use of flat tools.Rolling tests were performed using a billet with its length selected in compliance with the established dependencies.The experimental results demonstrate that the proposed solution is a viable method for end-face cavity removal.展开更多
文摘The problem of end-face cavity formation in parts produced by cross-wedge rolling was studied in order to reduce material consumption.The cavity depth was measured by the displacemern method.Twenty-one different cases of rolling were analysed by finile element method to determine the effects of process parameters such as the wedge tool angle,the temperature of material,the tool velocity and the reduction ratio on the depth of end-face cavities.Relationships between these parameters are examined in order to establish depe ndencies enabling quick and simple selection of a con cavity allowance in order to remove the cavities.The equations for calculating the con cavity allowance were verified in an experimental process for manufacturing ball pins with the use of flat tools.Rolling tests were performed using a billet with its length selected in compliance with the established dependencies.The experimental results demonstrate that the proposed solution is a viable method for end-face cavity removal.