Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity,...Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanornaterials have been developed for the effective in vivo delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.展开更多
文摘Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanornaterials have been developed for the effective in vivo delivery of short/ small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.