Lead-free multiferroic composites of 1−x(K_(0.5)Na_(0.5)NbO_(3−x))(Co_(0.6)Zn_(0.4))(Fe_(1.7)Mn_(0.3))O_(4)(KNN-CZFMO),where x=0.0,0.1,0.2,0.3,0.4,0.5 and 1.0,have been investigated for their structural,morphological,...Lead-free multiferroic composites of 1−x(K_(0.5)Na_(0.5)NbO_(3−x))(Co_(0.6)Zn_(0.4))(Fe_(1.7)Mn_(0.3))O_(4)(KNN-CZFMO),where x=0.0,0.1,0.2,0.3,0.4,0.5 and 1.0,have been investigated for their structural,morphological,electrical,magnetic,dielectric and magneto-dielectric properties.Presence of KNN and CZFMO crystal structure in each composite has been confirmed from X-ray diffrac-tion analysis(XRD).Cuboidal-shaped grains of KNN and spherical-shaped grains of CZFMO have been observed by scanning electron microscopy(SEM).The room temperature ferroelectric behavior as confirmed by polarization versus electric field(P-E)hysteresis loops has been found to be decreasing with increasing CZFMO concentration.Increasing magnetic ordering with the increase in CZFMO concentration in the prepared composites has been observed by magnetization versus magnetic field(M-H)hysteresis loops.The electrical conductivity of composites has been studied using Jonscher’s universal power law.The room temperature dielectric constant(ε′)and dielectric loss(tanδ)have been observed to decrease with the increase in the frequency of the applied external electric field.The dielectric relaxation behavior has been observed using curve fitting analysis via the Havriliak-Negami relaxation model.Maximum value of the magnetodielectric(MD)effect~−11%at a frequency of 1 kHz with the applied magnetic field of 1 T has been achieved for 0.9 KNN−0.1 CZFMO(x=0.1)composite in the present research work.展开更多
基金support(Basic Scientific Research Start-Up Project Grant No.F.30-401/2017(BSR))to carry out this research work.
文摘Lead-free multiferroic composites of 1−x(K_(0.5)Na_(0.5)NbO_(3−x))(Co_(0.6)Zn_(0.4))(Fe_(1.7)Mn_(0.3))O_(4)(KNN-CZFMO),where x=0.0,0.1,0.2,0.3,0.4,0.5 and 1.0,have been investigated for their structural,morphological,electrical,magnetic,dielectric and magneto-dielectric properties.Presence of KNN and CZFMO crystal structure in each composite has been confirmed from X-ray diffrac-tion analysis(XRD).Cuboidal-shaped grains of KNN and spherical-shaped grains of CZFMO have been observed by scanning electron microscopy(SEM).The room temperature ferroelectric behavior as confirmed by polarization versus electric field(P-E)hysteresis loops has been found to be decreasing with increasing CZFMO concentration.Increasing magnetic ordering with the increase in CZFMO concentration in the prepared composites has been observed by magnetization versus magnetic field(M-H)hysteresis loops.The electrical conductivity of composites has been studied using Jonscher’s universal power law.The room temperature dielectric constant(ε′)and dielectric loss(tanδ)have been observed to decrease with the increase in the frequency of the applied external electric field.The dielectric relaxation behavior has been observed using curve fitting analysis via the Havriliak-Negami relaxation model.Maximum value of the magnetodielectric(MD)effect~−11%at a frequency of 1 kHz with the applied magnetic field of 1 T has been achieved for 0.9 KNN−0.1 CZFMO(x=0.1)composite in the present research work.