We use the probabilistic method to prove that for any positive integer g there exists an infinite B2[g] sequence A = {ak} such that ak ≤ k^2+1/g(log k)^1/g+0(1) as k→∞. The exponent 2+1/g improves the previo...We use the probabilistic method to prove that for any positive integer g there exists an infinite B2[g] sequence A = {ak} such that ak ≤ k^2+1/g(log k)^1/g+0(1) as k→∞. The exponent 2+1/g improves the previous one, 2 + 2/g, obtained by Erdos and Renyi in 1960. We obtain a similar result for B2 [g] sequences of squares.展开更多
基金Supported by project MTM 2008-03880 of MICINN (Spain) by the joint Madrid Region-UAM project TENU3 (CCG08-UAM/ESP-3906)
文摘We use the probabilistic method to prove that for any positive integer g there exists an infinite B2[g] sequence A = {ak} such that ak ≤ k^2+1/g(log k)^1/g+0(1) as k→∞. The exponent 2+1/g improves the previous one, 2 + 2/g, obtained by Erdos and Renyi in 1960. We obtain a similar result for B2 [g] sequences of squares.