Given a pair of single input single output (SISO), linear time-invariant (LTI), and strictly proper plants of relative order r, this paper employs a continuous-time periodic controller to achieve 1) simultaneous ...Given a pair of single input single output (SISO), linear time-invariant (LTI), and strictly proper plants of relative order r, this paper employs a continuous-time periodic controller to achieve 1) simultaneous pole-placement for r = 1 and 2) guaranteed simultaneous stabilization for r = 2, 3, and 4, which jobs LTI controllers cannot, in general, do. The controller also ensures insignificant output ripples. The analysis is based on averaging principle. The computational steps for controller synthesis are linear algebraic in nature. An example illustrates the design procedure.展开更多
文摘Given a pair of single input single output (SISO), linear time-invariant (LTI), and strictly proper plants of relative order r, this paper employs a continuous-time periodic controller to achieve 1) simultaneous pole-placement for r = 1 and 2) guaranteed simultaneous stabilization for r = 2, 3, and 4, which jobs LTI controllers cannot, in general, do. The controller also ensures insignificant output ripples. The analysis is based on averaging principle. The computational steps for controller synthesis are linear algebraic in nature. An example illustrates the design procedure.