In the past few decades, scientists from all over the world have taken a keen interest in novel functional units such as small regulatory RNAs, small open reading frames, pseudogenes, transposons, integrase binding at...In the past few decades, scientists from all over the world have taken a keen interest in novel functional units such as small regulatory RNAs, small open reading frames, pseudogenes, transposons, integrase binding attB/attP sites, repeat elements within the bacterial intergenic regions (IGRs) and in the analysis of those "junk" regions for ge- nomic complexity. Here we have developed a web server, named Junker, to facilitate the in-depth analysis of IGRs for examining their length distribution, four-quadrant plots, GC percentage and repeat details. Upon selection of a particular bacterial genome, the physical genome map is displayed as a multiple loci with options to view any loci of interest in detail. In addition, an IGR statistics module has been created and implemented in the web server to analyze the length distribution of the IGRs and to understand the disordered grouping of IGRs across the genome by generating the four-quadrant plots. The proposed web server is freely available at the URL http://pranag.physics.iisc.ernet.in/junker/.展开更多
Small RNAs (sRNAs) are non-coding transcripts exerting their functions in the cells directly. Identification of sRNAs is a difficult task due to the lack of clear sequence and structural biases. Most sRNAs are ident...Small RNAs (sRNAs) are non-coding transcripts exerting their functions in the cells directly. Identification of sRNAs is a difficult task due to the lack of clear sequence and structural biases. Most sRNAs are identified within genus specific intergenic regions in related genomes. However, several of these regions remain un-annotated due to lack of sequence homology and/or potent statistical identification tools. A computational engine has been built to search within the intergenic regions to identify and roughly annotate new putative sRNA regions in Enterobacteriaceae genomes. It utilizes experimentally known sRNA data and their flanking genes/KEGG Orthology (KO) numbers as templates to identify similar sRNA regions in related query genomes. The search engine not only has the capability to locate putative intergenic regions for specific sRNAs, but also has the potency to locate conserved, shuffled or deleted gene clusters in query genomes. Because it uses the KO terms for locating functionally important regions such as sRNAs, any further KO number assignment to additional genes will increase the sensitivity. The PsRNA server is used for the identification of putative sRNA regions through the information retrieved from the sRNA of interest. The computing engine is available online at http://bioserver 1 .physics.iisc.ernet.in/psrna/and http://bicmku.in: 8081/psrna/.展开更多
文摘In the past few decades, scientists from all over the world have taken a keen interest in novel functional units such as small regulatory RNAs, small open reading frames, pseudogenes, transposons, integrase binding attB/attP sites, repeat elements within the bacterial intergenic regions (IGRs) and in the analysis of those "junk" regions for ge- nomic complexity. Here we have developed a web server, named Junker, to facilitate the in-depth analysis of IGRs for examining their length distribution, four-quadrant plots, GC percentage and repeat details. Upon selection of a particular bacterial genome, the physical genome map is displayed as a multiple loci with options to view any loci of interest in detail. In addition, an IGR statistics module has been created and implemented in the web server to analyze the length distribution of the IGRs and to understand the disordered grouping of IGRs across the genome by generating the four-quadrant plots. The proposed web server is freely available at the URL http://pranag.physics.iisc.ernet.in/junker/.
基金funded by the Department of Biotechnology (DBT), Government of India
文摘Small RNAs (sRNAs) are non-coding transcripts exerting their functions in the cells directly. Identification of sRNAs is a difficult task due to the lack of clear sequence and structural biases. Most sRNAs are identified within genus specific intergenic regions in related genomes. However, several of these regions remain un-annotated due to lack of sequence homology and/or potent statistical identification tools. A computational engine has been built to search within the intergenic regions to identify and roughly annotate new putative sRNA regions in Enterobacteriaceae genomes. It utilizes experimentally known sRNA data and their flanking genes/KEGG Orthology (KO) numbers as templates to identify similar sRNA regions in related query genomes. The search engine not only has the capability to locate putative intergenic regions for specific sRNAs, but also has the potency to locate conserved, shuffled or deleted gene clusters in query genomes. Because it uses the KO terms for locating functionally important regions such as sRNAs, any further KO number assignment to additional genes will increase the sensitivity. The PsRNA server is used for the identification of putative sRNA regions through the information retrieved from the sRNA of interest. The computing engine is available online at http://bioserver 1 .physics.iisc.ernet.in/psrna/and http://bicmku.in: 8081/psrna/.