期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modelling the viscoplastic behaviour of Callovo-Oxfordian claystone with consideration of damage effect
1
作者 Hao Wang Yu-Jun Cui +1 位作者 Minh Ngoc Vu jean talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期303-316,共14页
In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute... In order to evaluate the performance of deep geological disposal of radioactive waste,an underground research laboratory(URL)was constructed by Andra in the Callovo-Oxfordian(COx)claystone formation at the Meuse/Haute-Marne(MHM).The construction of URL induced the excavation damage of host formations,and the ventilation in the galleries desaturated the host formation close to the gallery wall.Moreover,it is expected that the mechanical behaviour of COx claystone is time-dependent.This study presents a constitutive model developed to describe the viscoplastic behaviour of unsaturated and damaged COx claystone.In this model,the unsaturation effect is considered by adopting the Bishop effective stress and the van Genuchten(VG)water retention model.In terms of the viscoplastic behaviour,the nonstationary flow surface(NSFS)theory for unsaturated soils is used with consideration of the coupled effects of strain rate and suction on the yield stress.A progressive hardening law is adopted.Meanwhile,a non-associated flow rule is used,which is similar to that in Barcelona basic model(BBM).In addition,to describe the damage effect induced by suction change and viscoplastic loading,a damage function is defined based on the crack volume proportion.This damage function contains two variables:unsaturated effective stress and viscoplastic volumetric strain,with the related parameters determined based on the mercury intrusion porosimetry(MIP)tests.For the model validation,different tests on COx claystone under different loading paths are simulated.Comparisons between experimental and simulated results indicated that the present model is able to well describe the viscoplastic behaviour of damaged COx claystone,including swelling/shrinkage,triaxial extension and compression,and triaxial creep. 展开更多
关键词 Callovo-Oxfordian(COx)claystone Excavation damage Time-dependent behaviour SUCTION Viscoplastic model
下载PDF
Self-sealing of fractures in indurated claystones measured by water and gas flow 被引量:1
2
作者 Chun-Liang Zhang jean talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期227-238,共12页
Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The ... Self-sealing of fractures in the indurated Callovo-Oxfordian(COX)and Opalinus(OPA)claystones,which are considered as host rocks for disposal of radioactive waste,was investigated on artificially fractured samples.The samples were extracted from four lithological facies relatively rich in clay mineral,carbonate and quartz,respectively.The self-sealing of fractures was measured by fracture closure,water permeability variation,gas penetration,and recovery of gas-induced pathways.Most of the fractured samples exhibited a dramatic reduction inwater permeability to low levels that is close to that of intact rock,depending on their mineralogical composition,fracture intensity,confining stress,and load duration.The self-sealing capacity of the clay-rich samples is higher than that of the carbonate-rich and sandy ones.Significant effects of sample size and fracture intensity were identified.The sealed fractures become gas-tight for certain in-jection pressures.However,the measured gas breakthrough pressures are still lower than the confining stresses.The gas-induced pathways can recover when contacting water.These important findings imply that fractures in such indurated claystones can effectively recover to hinder water transport but allow gas release under relatively low pressures without compromising the rock integrity. 展开更多
关键词 Claystone Self-sealing of fracture Fracture closure Water permeability Gas breakthrough pressure Resealing of gas pathway
下载PDF
Effect of water chemistry on the hydro-mechanical behaviour of compacted mixtures of claystone and Na/Ca-bentonites for deep geological repositories
3
作者 Zhixiong Zeng Yu-Jun Cui jean talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期527-536,共10页
In the French deep geological disposal for radioactive wastes,compacted bentonite/claystone mixtures have been considered as possible sealing materials.After emplacement in place,such mixtures are hydrated by the site... In the French deep geological disposal for radioactive wastes,compacted bentonite/claystone mixtures have been considered as possible sealing materials.After emplacement in place,such mixtures are hydrated by the site solution as well as the cement solution produced by the degradation of concrete.In this study,the effects of synthetic site solution and cement solution on the hydro-mechanical behaviour of compacted mixtures of claystone and two types of bentonites(MX80 Na-bentonite and Sardinia Cabentonite)were investigated by carrying out a series of swelling pressure,hydraulic conductivity and mercury intrusion porosimetry(MIP)tests.It was found that for the MX80 bentonite/claystone mixture hydrated with synthetic site solution,the swelling capacity was reduced compared to the case with deionised water owing to the transformation of Na-montmorillonite to multi-cation dominant montmorillonite by cation exchanges.For the Sardinia bentonite/claystone mixture,the similar increasing rate of swelling pressure was observed during the crystalline swelling process for different solutions,suggesting insignificant cation exchanges.Additionally,the cations in the synthetic site solution could reduce the thickness of diffuse double layer and the osmotic swelling for both MX80 bentonite/claystone and Sardinia bentonite/claystone mixtures.The large-pore volume increased consequently and enhanced water flow.In the cement solution,the hydroxide could also dissolve the montmorillonite,reducing the swelling pressure,and increase the large-pore volume,facilitating the water flow.Furthermore,the decrease of swelling pressure and the increase of hydraulic conductivity were more significant in the case of low dry density because of more intensive interaction between montmorillonite and hydroxide due to the high permeability. 展开更多
关键词 Bentonite/claystone mixture Synthetic site solution Cement solution Bentonite type Swelling pressure Hydraulic conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部