The steel industry has come a long way in increasing its energy efficiency.In Europe the carbon intensity of steelmaking over the last 40 years was decreased by a factor 2.The potential for further improvements is now...The steel industry has come a long way in increasing its energy efficiency.In Europe the carbon intensity of steelmaking over the last 40 years was decreased by a factor 2.The potential for further improvements is now becoming less obvious as blast furnace operations are approaching the thermodynamical lower limit of hot metal production.To take on the climate change challenge and be able to respond to the expectation for strong reduction of carbon emissions,ArcelorMittal(AM) has developed a two step approach: (1) In a first instance given the modest remaining potential for incremental improvements precise benchmark tools were developed.This allowed identifying the top runners and determining the remaining potential for improvement.Plans were developed to bridge the gap with this achievable performance.In total a plan was devised with more than 400 identified actions throughout the group.This action plan will allow achieving a further 8% increase of CO_2 efficiency by 2020. (2 ) Secondly,already in 2002 AM engaged in the development of breakthrough technologies to further drastically reduce the carbon intensity of steelmaking.After screening a large number of candidates a few were selected for further development.A first breakthrough technology which is the most advanced stage of development can be applied to existing blast furnace and is reaching maturity and a demonstration on industrial scale of this technology is under preparation.In itself this technology will decrease the dependency on carbon as well as increase the productivity of the original blast furnaces.Real big gains can be made if this technology can be combined with underground carbon storage. In the AM roadmap the impact of raw materials(DRI,scrap) was excluded.In the longer run however the attention will have to turn to the overall footprint of materials and the long term consequences of the choice of materials.Increasing the recovery while preserving the quality of used steel products will leverage greatly the efforts done in the production of primary and secondary steel and power.展开更多
文摘The steel industry has come a long way in increasing its energy efficiency.In Europe the carbon intensity of steelmaking over the last 40 years was decreased by a factor 2.The potential for further improvements is now becoming less obvious as blast furnace operations are approaching the thermodynamical lower limit of hot metal production.To take on the climate change challenge and be able to respond to the expectation for strong reduction of carbon emissions,ArcelorMittal(AM) has developed a two step approach: (1) In a first instance given the modest remaining potential for incremental improvements precise benchmark tools were developed.This allowed identifying the top runners and determining the remaining potential for improvement.Plans were developed to bridge the gap with this achievable performance.In total a plan was devised with more than 400 identified actions throughout the group.This action plan will allow achieving a further 8% increase of CO_2 efficiency by 2020. (2 ) Secondly,already in 2002 AM engaged in the development of breakthrough technologies to further drastically reduce the carbon intensity of steelmaking.After screening a large number of candidates a few were selected for further development.A first breakthrough technology which is the most advanced stage of development can be applied to existing blast furnace and is reaching maturity and a demonstration on industrial scale of this technology is under preparation.In itself this technology will decrease the dependency on carbon as well as increase the productivity of the original blast furnaces.Real big gains can be made if this technology can be combined with underground carbon storage. In the AM roadmap the impact of raw materials(DRI,scrap) was excluded.In the longer run however the attention will have to turn to the overall footprint of materials and the long term consequences of the choice of materials.Increasing the recovery while preserving the quality of used steel products will leverage greatly the efforts done in the production of primary and secondary steel and power.