Nowadays, many works are interested in adapting to the context without taking into account neither the responsiveness to adapt their solution, nor the ability of designers to model all the relevant concerns. Our paper...Nowadays, many works are interested in adapting to the context without taking into account neither the responsiveness to adapt their solution, nor the ability of designers to model all the relevant concerns. Our paper provides a new architecture for context management that tries to solve both problems. This approach is also based on the analysis and synthesis of context-aware frameworks proposed in literature. Our solution is focus on a separation of contextual concerns at the design phase and preserves it as much as possible at runtime. For this, we introduce the notion of independent views that allow designers to focus on their domain of expertise. At runtime, the architecture is splitted in 2 independent levels of adaptation. The highest is in charge of current context identification and manages each view independently. The lowest handles the adaptation of the application according to the rules granted by the previous level.展开更多
With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) s...With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services which meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service which is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent observation channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.展开更多
基金the U-Insither Project(collaborative project between the Universite Nice Sophia Antipolis and EDF R&D/STREP).
文摘Nowadays, many works are interested in adapting to the context without taking into account neither the responsiveness to adapt their solution, nor the ability of designers to model all the relevant concerns. Our paper provides a new architecture for context management that tries to solve both problems. This approach is also based on the analysis and synthesis of context-aware frameworks proposed in literature. Our solution is focus on a separation of contextual concerns at the design phase and preserves it as much as possible at runtime. For this, we introduce the notion of independent views that allow designers to focus on their domain of expertise. At runtime, the architecture is splitted in 2 independent levels of adaptation. The highest is in charge of current context identification and manages each view independently. The lowest handles the adaptation of the application according to the rules granted by the previous level.
文摘With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services which meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service which is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent observation channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.