L-Deprenyl is selective and irreversible monoamine oxidase B inhibitor, known to have neuroprotective properties. Putrescine, one of polyamine, is thought to be important in the neuronal cell damage associated with va...L-Deprenyl is selective and irreversible monoamine oxidase B inhibitor, known to have neuroprotective properties. Putrescine, one of polyamine, is thought to be important in the neuronal cell damage associated with various type of excitatory neurotoxicity. We examined the effects of L-deprenyl on the changes in putrescine level and neuronal damage after transient global ischemia in ger-bils. Male Mongolian gerbils weighing 65 - 75 g were used in the experiment. Global ischemia was induced by occlusion of common carotid arteries for 3 min to observe neuronal injury in hippocampal pyramidal cells. L-Deprenyl group was given 10 mg/kg of L-deprenyl intraperitoneally immediately after, 3 h and 6 h after global ischemia. Treated animals were processed in parallel with ischemic animals receiving saline as a vehicle and with sham- operated controls. Hippocampal putrescine level was increased by global ischemia and inhibited by L-deprenyl treatment. In histological findings, counts of viable neurons were made in the pyramidal cell layer of the hippocampal CA1 area 3 days after ischemic insult. The number of viable neurons in the pyramidal cell layer of CA1 area was significantly increased in animals treated with L-deprenyl compared to vehicle-treated ischemic animals (p < 0.05). In terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick endlabeling (TUNEL) assay, semiquantitative analysis of dark-brown neuronal cells was made in the hippocampal CA1 area. There was also a significant difference in the degree of TUNEL staining in the hippocampal CA1 area between vehi-cle-treated and L-deprenyl-treated animals (p < 0.05). These data show L-deprenyl is effective as a prophylactic treatment for neuronal injury when it is administrated before ischemia but a further study need to know the effects of administration of L-deprenyl after ischemia and at given times after reper-fusion.展开更多
The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infinite solutions that might otherwise aris...The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infinite solutions that might otherwise arise when recovering a 3D geometry from 2D photographs. The main outcome of our research shows that the proposed methodology can be used to reconstruct ancient monuments for use as proxies for digital effects in applications such as tourism, games, and entertainment, which do not require very accurate modeling. In this article, we consider the reconstruction of ancient Mughal architecture including the Taj Mahal. We propose a modeling pipeline that makes an easy reconstruction possible using a single photograph taken from a single view, without the need to create complex point clouds from multiple images or the use of laser scanners. First, an initial model is automatically reconstructed using locally fitted planar primitives along with their boundary polygons and the adjacency relation among parts of the polygons. This approach is faster and more accurate than creating a model from scratch because the initial reconstruction phase provides a set of structural information together with the adjacency relation, which makes it possible to estimate the approximate depth of the entire structural monument. Next, we use manual extrapolation and editing techniques with modeling software to assemble and adjust different 3D components of the model. Thus, this research opens up the opportunity for the present generation to experience remote sites of architectural and cultural importance through virtual worlds and real-time mobile applications. Variations of a recreated 3D monument to represent an amalgam of various cultures are targeted for future work.展开更多
文摘L-Deprenyl is selective and irreversible monoamine oxidase B inhibitor, known to have neuroprotective properties. Putrescine, one of polyamine, is thought to be important in the neuronal cell damage associated with various type of excitatory neurotoxicity. We examined the effects of L-deprenyl on the changes in putrescine level and neuronal damage after transient global ischemia in ger-bils. Male Mongolian gerbils weighing 65 - 75 g were used in the experiment. Global ischemia was induced by occlusion of common carotid arteries for 3 min to observe neuronal injury in hippocampal pyramidal cells. L-Deprenyl group was given 10 mg/kg of L-deprenyl intraperitoneally immediately after, 3 h and 6 h after global ischemia. Treated animals were processed in parallel with ischemic animals receiving saline as a vehicle and with sham- operated controls. Hippocampal putrescine level was increased by global ischemia and inhibited by L-deprenyl treatment. In histological findings, counts of viable neurons were made in the pyramidal cell layer of the hippocampal CA1 area 3 days after ischemic insult. The number of viable neurons in the pyramidal cell layer of CA1 area was significantly increased in animals treated with L-deprenyl compared to vehicle-treated ischemic animals (p < 0.05). In terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick endlabeling (TUNEL) assay, semiquantitative analysis of dark-brown neuronal cells was made in the hippocampal CA1 area. There was also a significant difference in the degree of TUNEL staining in the hippocampal CA1 area between vehi-cle-treated and L-deprenyl-treated animals (p < 0.05). These data show L-deprenyl is effective as a prophylactic treatment for neuronal injury when it is administrated before ischemia but a further study need to know the effects of administration of L-deprenyl after ischemia and at given times after reper-fusion.
基金Project partially supported by the Ministry of Culture,Sports and Tourism and Korea Creative Content Agency in the Culture Technology Research&Development Program 2014(50%)the Next Generation Information Computing Development Program through the National Research Foundation of Korea funded by the Ministry of Science,ICT and Future Planning(No.2012M3C4A7032185)(50%)
文摘The objective of this research is the rapid reconstruction of ancient buildings of historical importance using a single image. The key idea of our approach is to reduce the infinite solutions that might otherwise arise when recovering a 3D geometry from 2D photographs. The main outcome of our research shows that the proposed methodology can be used to reconstruct ancient monuments for use as proxies for digital effects in applications such as tourism, games, and entertainment, which do not require very accurate modeling. In this article, we consider the reconstruction of ancient Mughal architecture including the Taj Mahal. We propose a modeling pipeline that makes an easy reconstruction possible using a single photograph taken from a single view, without the need to create complex point clouds from multiple images or the use of laser scanners. First, an initial model is automatically reconstructed using locally fitted planar primitives along with their boundary polygons and the adjacency relation among parts of the polygons. This approach is faster and more accurate than creating a model from scratch because the initial reconstruction phase provides a set of structural information together with the adjacency relation, which makes it possible to estimate the approximate depth of the entire structural monument. Next, we use manual extrapolation and editing techniques with modeling software to assemble and adjust different 3D components of the model. Thus, this research opens up the opportunity for the present generation to experience remote sites of architectural and cultural importance through virtual worlds and real-time mobile applications. Variations of a recreated 3D monument to represent an amalgam of various cultures are targeted for future work.