Self-propelling micro-and nano-motors(MNMs)have been extensively investigated as an emerging oral drug delivery carrier for gastrointestinal(GI)tract diseases.However,the propulsion of current MNMs reported so far is ...Self-propelling micro-and nano-motors(MNMs)have been extensively investigated as an emerging oral drug delivery carrier for gastrointestinal(GI)tract diseases.However,the propulsion of current MNMs reported so far is mostly based on the redox reaction of metals(such as Zn and Mg)with severe propulsion gas generation,remaining non-degradable residue in the GI tract.Here,we develop a bioinspired enzyme-powered biopolymer micromotor mimicking the mucin penetrating behavior of Helicobacter pylori in the stomach.It converts urea to ammonia and the subsequent increase of pH induces local gel-sol transition of the mucin layer facilitating the penetration into the stomach tissue layer.The successful fabrication of micromotors is confirmed by high-resolution transmission electron microscopy,electron energy loss spectroscopy,dynamic light scattering analysis,zeta-potential analysis.In acidic condition,the immobilized urease can efficiently converted urea to ammonia,comparable with that of neutral condition because of the increase of surrounding pH during propulsion.After administration into the stomach,the micromotors show enhanced penetration and prolonged retention in the stomach for 24 h.Furthermore,histological analysis shows that the micromotors are cleared within 3 days without causing any toxicity in the GI tract.The enhanced penetration and retention of the micromotors as an active oral delivery carrier in the stomach would be successfully harnessed for the treatment of various GI tract diseases.展开更多
基金This research was supported by the Basic Science Research Program(2020R1A2C3014070)the Korea Medical Device Development Fund grant(2020M3E5D8105732)+1 种基金Bio&Medical Technology Development Program(2021M3E5E7021473)the Engineering Research Center(ERC)Program(NRF-2017R1A5A1014708)of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Korea.
文摘Self-propelling micro-and nano-motors(MNMs)have been extensively investigated as an emerging oral drug delivery carrier for gastrointestinal(GI)tract diseases.However,the propulsion of current MNMs reported so far is mostly based on the redox reaction of metals(such as Zn and Mg)with severe propulsion gas generation,remaining non-degradable residue in the GI tract.Here,we develop a bioinspired enzyme-powered biopolymer micromotor mimicking the mucin penetrating behavior of Helicobacter pylori in the stomach.It converts urea to ammonia and the subsequent increase of pH induces local gel-sol transition of the mucin layer facilitating the penetration into the stomach tissue layer.The successful fabrication of micromotors is confirmed by high-resolution transmission electron microscopy,electron energy loss spectroscopy,dynamic light scattering analysis,zeta-potential analysis.In acidic condition,the immobilized urease can efficiently converted urea to ammonia,comparable with that of neutral condition because of the increase of surrounding pH during propulsion.After administration into the stomach,the micromotors show enhanced penetration and prolonged retention in the stomach for 24 h.Furthermore,histological analysis shows that the micromotors are cleared within 3 days without causing any toxicity in the GI tract.The enhanced penetration and retention of the micromotors as an active oral delivery carrier in the stomach would be successfully harnessed for the treatment of various GI tract diseases.