This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient cond...This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.展开更多
文摘This paper shows the blood flow control (FwC) performance to adjust rotational speed of an ICBP (implantable centrifugal blood pump) in order to provide an adequate flow to left ventricle in different patient conditions. ICBP is a totally implantable LVAD (left ventricular assist device) with ceramic bearings developed for long term circulatory assistance. FwC uses PI (proportional-integral) control to adjust rotational speed in order to provide blood flow. FwC does not use sensor for feedback, as there is an estimation system to provide blood flow measurement. Control strategy has being studied in a HCS (hybrid cardiovascular simulator) as a tool that allows the physical connection of ICBP during evaluation. In addition, HCS allows changes of some cardiovascular parameters in order to simulate specific heart disease: ejection fraction (10-25%) and heart rate (50-110 bpm). FwC was able to adjust blood flow with steady error less than 2%. Results demonstrated that FwC is adequate to LVAD control irL different left ventricle failure conditions.