Sustainable structures are critical for addressing global climate change.Hence,their structural resilience or ability to recover from natural events must be considered comprehensively.Green roofs are a widely used sus...Sustainable structures are critical for addressing global climate change.Hence,their structural resilience or ability to recover from natural events must be considered comprehensively.Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity.To expand their usage,their inherent damping and layout sensitivity to seismic performance are investigated in this study.The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events.Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5%under both dry and saturated conditions.Based on these findings,nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof.The increased damping in the green roof soil is beneficial to the structural performance,i.e.,it reduces the building displacement and acceleration by 10%and 12%,respectively.Additionally,certain configurations are more effective and beneficial to the structural response than others,which suggests the possibility of design optimization.Based on the findings of this study,new methods of modeling and considering green roofs in structural design are established.展开更多
文摘Sustainable structures are critical for addressing global climate change.Hence,their structural resilience or ability to recover from natural events must be considered comprehensively.Green roofs are a widely used sustainable feature that improve the environment while providing excellent occupant amenity.To expand their usage,their inherent damping and layout sensitivity to seismic performance are investigated in this study.The soil of a green roof can serve as a damper to dissipate the energy generated by earthquakes or other dynamic events.Results of preliminary analysis show that a green roof soil can increase localized damping by 2.5%under both dry and saturated conditions.Based on these findings,nonlinear time-history analyses are conducted on a three-story building in SAP2000 to monitor the structural behavior with and without a green roof.The increased damping in the green roof soil is beneficial to the structural performance,i.e.,it reduces the building displacement and acceleration by 10%and 12%,respectively.Additionally,certain configurations are more effective and beneficial to the structural response than others,which suggests the possibility of design optimization.Based on the findings of this study,new methods of modeling and considering green roofs in structural design are established.