Using coherent light, we analyze the temporal diffraction at a single point from real-time living C. elegans locomotion in three-dimensional space. We describe the frequency spectrum of single swimming nematodes in an...Using coherent light, we analyze the temporal diffraction at a single point from real-time living C. elegans locomotion in three-dimensional space. We describe the frequency spectrum of single swimming nematodes in an optical cuvette at a single sampling point in the far-field diffraction pattern. An analytical expression of the double slit is used to model the frequency spectra of nematodes as oscillating segments. The frequency spectrum in the diffraction pattern expands discretely and linearly as a multiple of the fundamental frequency with increasing distance from the central maximum. The frequency spectrum of a worm at a single point in the frequency spectrum contains all the frequencies involved in the locomotion and is used to characterize and compare nematodes. The occurrence of resonant frequencies in the dynamic diffraction pattern increases with the distance from the central maximum. The regular spacing of the resonant frequencies is used to identify characteristic swimming frequencies.展开更多
Soil and aquatic multicellular microorganisms play a critical role in the nutrient-cycling and organismal ecology of soil and aquatic ecosystems. These organisms live and behave in a complex three-dimensional environm...Soil and aquatic multicellular microorganisms play a critical role in the nutrient-cycling and organismal ecology of soil and aquatic ecosystems. These organisms live and behave in a complex three-dimensional environment. Most studies of microorganismal behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field. We report on a novel analytical approach that provides real-time analysis of freely swimming C elegans without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light onto nematodes in a cuvette. We measured oscillation frequencies for freely swimming nematodes in cuvettes of different sizes to provide different physical constraints on their swimming. We compared these frequencies with those obtained for nematodes swimming within a small droplet of water on a microscope slide, a strategy used by microscope-based locomotion analysis systems. We collected data from diffraction patterns using two methods: video analysis and real time data acquisition using a fast photodiode. Swimming frequencies of nematodes in a droplet of ionic solution on a microscope slide was confirmed to be 2.00 Hz with a variance of 0.05 Hz for the video analysis method and 0.03 Hz for the real time data acquisition using a photodiode;this result agrees with previously published estimates using microscope-based analytical techniques. We find the swimming frequency of unconstrained worms within larger cuvettes to be 2.37 Hz with a variance of 0.02 Hz. As the cuvette size decreased, so did the oscillation frequency, indicating a change in locomotion when physical constraints are introduced.展开更多
文摘Using coherent light, we analyze the temporal diffraction at a single point from real-time living C. elegans locomotion in three-dimensional space. We describe the frequency spectrum of single swimming nematodes in an optical cuvette at a single sampling point in the far-field diffraction pattern. An analytical expression of the double slit is used to model the frequency spectra of nematodes as oscillating segments. The frequency spectrum in the diffraction pattern expands discretely and linearly as a multiple of the fundamental frequency with increasing distance from the central maximum. The frequency spectrum of a worm at a single point in the frequency spectrum contains all the frequencies involved in the locomotion and is used to characterize and compare nematodes. The occurrence of resonant frequencies in the dynamic diffraction pattern increases with the distance from the central maximum. The regular spacing of the resonant frequencies is used to identify characteristic swimming frequencies.
文摘Soil and aquatic multicellular microorganisms play a critical role in the nutrient-cycling and organismal ecology of soil and aquatic ecosystems. These organisms live and behave in a complex three-dimensional environment. Most studies of microorganismal behavior, in contrast, have been conducted using microscope-based approaches, which limit the movement and behavior to a narrow, nearly two-dimensional focal field. We report on a novel analytical approach that provides real-time analysis of freely swimming C elegans without dependence on microscope-based equipment. This approach consists of tracking the temporal periodicity of diffraction patterns generated by directing laser light onto nematodes in a cuvette. We measured oscillation frequencies for freely swimming nematodes in cuvettes of different sizes to provide different physical constraints on their swimming. We compared these frequencies with those obtained for nematodes swimming within a small droplet of water on a microscope slide, a strategy used by microscope-based locomotion analysis systems. We collected data from diffraction patterns using two methods: video analysis and real time data acquisition using a fast photodiode. Swimming frequencies of nematodes in a droplet of ionic solution on a microscope slide was confirmed to be 2.00 Hz with a variance of 0.05 Hz for the video analysis method and 0.03 Hz for the real time data acquisition using a photodiode;this result agrees with previously published estimates using microscope-based analytical techniques. We find the swimming frequency of unconstrained worms within larger cuvettes to be 2.37 Hz with a variance of 0.02 Hz. As the cuvette size decreased, so did the oscillation frequency, indicating a change in locomotion when physical constraints are introduced.