We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication...We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication from a nanoparticle ink solution and two-and three-dimensional nanostructuring with pattern sizes down to 50 nm have recently been demonstrated.Insight into the yet unknown nanoscopic optical properties of these nanostructures is highly desired for their future applications in nanophotonics.We implement a spectrally broadband scattering-type near-field optical spectroscopy technique to study individual Sb2S3 nanodots with a 20-nm spatial resolution,covering the range from 700 to 900 nm.We show that in this below-bandgap range,the Sb2S3 nanostructures act as high-refractive-index,low-loss waveguides with mode profiles close to those of idealized cylindrical waveguides,despite a considerable structural disorder.In combination with their high above-bandgap absorption,this makes them promising candidates for applications as dielectric metamaterials,specifically for ultrafast photoswitching.展开更多
基金funding by the Deutsche Forschungsgemeinschaft(SPP1391,SPP1839,GRK1885)the Niedersachsisches Ministerium für Wissenschaft und Kultur(LGRK,Nano-Energieforschung)+2 种基金the Korea Foundation for International Cooperation of Science and Technology(K20815000003)the German-Israeli Foundation(1256)financial support by the China Scholarship Council(CSC 201404910464)
文摘We investigate the optical properties of nanostructures of antimony sulfide(Sb2S3),a direct-bandgap semiconductor material that has recently sparked considerable interest as a thin film solar cell absorber.Fabrication from a nanoparticle ink solution and two-and three-dimensional nanostructuring with pattern sizes down to 50 nm have recently been demonstrated.Insight into the yet unknown nanoscopic optical properties of these nanostructures is highly desired for their future applications in nanophotonics.We implement a spectrally broadband scattering-type near-field optical spectroscopy technique to study individual Sb2S3 nanodots with a 20-nm spatial resolution,covering the range from 700 to 900 nm.We show that in this below-bandgap range,the Sb2S3 nanostructures act as high-refractive-index,low-loss waveguides with mode profiles close to those of idealized cylindrical waveguides,despite a considerable structural disorder.In combination with their high above-bandgap absorption,this makes them promising candidates for applications as dielectric metamaterials,specifically for ultrafast photoswitching.