期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Groundwater Contribution to Surface Water Contamination in a North German Low Land Catchment with Intensive Agricultural Land Use 被引量:2
1
作者 Muhammad Waseem Tatyana Koegst jens tranckner 《Journal of Water Resource and Protection》 2018年第3期231-250,共20页
The contribution of groundwater (GW) to the nitrate loads in surface waters (SW) was exemplarily studied for the river Augraben with a catchment area of 89.9 km2, located in north eastern Germany. The study uses avail... The contribution of groundwater (GW) to the nitrate loads in surface waters (SW) was exemplarily studied for the river Augraben with a catchment area of 89.9 km2, located in north eastern Germany. The study uses available GW and SW quality data in order to develop a relationship between SW and GW in the Augraben catchment. The calculated ratio of base flow varies from 40% to 80% using various filtering methods of hydrograph separation methods (without taking into account the drainage) in comparison to a calculated GW infiltration of 5% - 7% applying Darcy’s law (upper unconfined aquifer). Drainage was estimated as the difference in base flow obtained through filtering methods of hydrograph separation and the Darcy’s law. Results on the basis of monitoring data and hydrograph separation in quick flow and base flow showed that during winter periods, high concentration in SW has been found parallel to periods of higher GW flow with a strong correlation between SW and GW concentrations. These findings also coincided with the non-vegetation period, i.e. low nitrogen uptake by plants. Overall, nitrate-nitrogen loads at the SW monitoring point (Bei Lindenberg represents the 85% area of the catchment) were 193.5, 97.72, and 122 tons for the year 2010, 2011 and 2012 respectively. Measured GW concentrations in the catchment differ strongly, depending on land use, with elevated concentrations in agricultural areas compared to monitoring points in grass land and in forest areas. In one GW monitoring station, NO3 concentrations exceed the maximum permissible limits (MPL) according to EU water quality standards (MPL = 50 mg/l NO3), up to factor two. High ammonia concentrations at another station may be due to excessive application of manure. The contribution of the different sub-catchments to nitrate load in SW can be ranked in decreasing order in Zone B, D, A and C. Drainage and interflow proved to be a major contributor with 55% - 65% of total load in SW. With the applied method a robust estimation of GW contribution to nitrate loads is feasible using typically available monitoring data of German environmental authorities. 展开更多
关键词 Base Flow Separation Diffuse pollution Drainage and Interflow Groundwater Nitrogen Gehmkow Augraben
下载PDF
Suitability of common models to estimate hydrology and diffuse water pollution in North-eastern German lowland catchments with intensive agricultural land use 被引量:2
2
作者 Muhammad WASEEM Frauke KACHHOLZ jens tranckner 《Frontiers of Agricultural Science and Engineering》 2018年第4期420-431,共12页
Various process-based models are extensively being used to analyze and forecast catchment hydrology and water quality. However, it is always important to select the appropriate hydrological and water quality modeling ... Various process-based models are extensively being used to analyze and forecast catchment hydrology and water quality. However, it is always important to select the appropriate hydrological and water quality modeling tools to predict and analyze the watershed and also consider their strengths and weaknesses. Different factors such as data availability, hydrological, hydraulic, and water quality processes and their desired level of complexity are crucial for selecting a plausible modeling tool. This review is focused on suitable model selection with a focus on desired hydrological, hydraulic and water quality processes(nitrogen fate and transport in surface, subsurface and groundwater bodies) by keeping in view the typical lowland catchments with intensive agricultural land use,higher groundwater tables, and decreased retention times due to the provision of artificial drainage. In this study, four different physically based, partially and fully distributed integrated water modeling tools, SWAT(soil and water assessment tool), SWIM(soil and water integrated model),HSPF(hydrological simulation program– FORTRAN) and a combination of tools from DHI(MIKE SHE coupled with MIKE 11 and ECO Lab), have been reviewed particularly for the Tollense River catchment located in North-eastern Germany. DHI combined tools and SWAT were more suitable for simulating the desired hydrological processes, but in the case of river hydraulics and water quality, the DHI family of tools has an edge due to their integrated coupling between MIKE SHE, MIKE 11 and ECO Lab. In case of SWAT, it needs to be coupled with another tool to model the hydraulics in the Tollense River as SWAT does not include backwater effects and provision of control structures. However, both SWAT and DHI tools are more data demanding in comparison to SWIM and HSPF. For studying nitrogen fate and transport in unsaturated, saturated, and river zone, HSPF was a better model to simulate the desired nitrogen transformation and transport processes. However, for nitrogen dynamics and transformations in shallow streams, ECO Lab had an edge due its flexibility for inclusion of user-desired water quality parameters and processes. In the case of SWIM, most of the input data and governing equations are similar to SWAT but it does not include water bodies(ponds and lakes), wetlands and drainage systems. In this review, only the processes that were needed to simulate the Tollense River catchment were considered, however the resulted model selection criteria can be generalized to other lowland catchments in Australia, North-western Europe and North America with similar complexity. 展开更多
关键词 diffuse pollution ECO Lab HSPF lowland catchment MIKE 11 MIKE SHE modeling tools SWAT SWIM Tollense River water quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部