Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading...Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.展开更多
Challenges in the understanding of three-dimensional(3D)brain networks by simultaneously recording both surface and intracortical areas of brain signals remain due to the difficulties of constructing mechanical design...Challenges in the understanding of three-dimensional(3D)brain networks by simultaneously recording both surface and intracortical areas of brain signals remain due to the difficulties of constructing mechanical design and spatial limitations of the implanted sites.Here,we present a foldable and flexible 3D neural prosthetic that facilitates the 3D mapping of complex neural circuits with high spatiotemporal dynamics from the intracortical to cortical region.This device is the tool to map the 3D neural transmission through sophisticatedly designed four flexible penetrating shanks and surface electrode arrays in one integrated system.We demonstrate the potential possibilities of identifying correlations of neural activities from the intracortical area to cortical regions through continuous monitoring of electrophysiological signals.We also exploited the structural properties of the device to record synchronized signals of single spikes evoked by unidirectional total whisker stimulation.This platform offers opportunities to clarify unpredictable 3D neural pathways and provides a next-generation neural interface.展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2024-00353768)the Yonsei Fellowship, funded by Lee Youn Jae. This study was funded by the KIST Institutional Program Project No. 2E31603-22-140 (K J Y). S M W acknowledges the support by National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant Nos. NRF-2021R1C1C1009410, NRF2022R1A4A3032913 and RS-2024-00411904)
文摘Flexible electronics offer a multitude of advantages,such as flexibility,lightweight property,portability,and high durability.These unique properties allow for seamless applications to curved and soft surfaces,leading to extensive utilization across a wide range of fields in consumer electronics.These applications,for example,span integrated circuits,solar cells,batteries,wearable devices,bio-implants,soft robotics,and biomimetic applications.Recently,flexible electronic devices have been developed using a variety of materials such as organic,carbon-based,and inorganic semiconducting materials.Silicon(Si)owing to its mature fabrication process,excellent electrical,optical,thermal properties,and cost efficiency,remains a compelling material choice for flexible electronics.Consequently,the research on ultra-thin Si in the context of flexible electronics is studied rigorously nowadays.The thinning of Si is crucially important for flexible electronics as it reduces its bending stiffness and the resultant bending strain,thereby enhancing flexibility while preserving its exceptional properties.This review provides a comprehensive overview of the recent efforts in the fabrication techniques for forming ultra-thin Si using top-down and bottom-up approaches and explores their utilization in flexible electronics and their applications.
基金support received from the National Research Foundation of Korea (Grant Nos.NRF-2019R1A2C2086085,NRF-2021R1A4A1031437,and NRF2018M3A7B4071109)support provided by the National Institutes of Health (Award Nos.R21EB030140,U01DA056242,and R61HL154215).
文摘Challenges in the understanding of three-dimensional(3D)brain networks by simultaneously recording both surface and intracortical areas of brain signals remain due to the difficulties of constructing mechanical design and spatial limitations of the implanted sites.Here,we present a foldable and flexible 3D neural prosthetic that facilitates the 3D mapping of complex neural circuits with high spatiotemporal dynamics from the intracortical to cortical region.This device is the tool to map the 3D neural transmission through sophisticatedly designed four flexible penetrating shanks and surface electrode arrays in one integrated system.We demonstrate the potential possibilities of identifying correlations of neural activities from the intracortical area to cortical regions through continuous monitoring of electrophysiological signals.We also exploited the structural properties of the device to record synchronized signals of single spikes evoked by unidirectional total whisker stimulation.This platform offers opportunities to clarify unpredictable 3D neural pathways and provides a next-generation neural interface.