We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging mult...We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging multiple anisotropic GST nanorods, the gradient metasurface, which has opposite directions of phase gradients at the two distinct phases of GST, is demonstrated theoretically and numerically. As a result, in the case of normal incidence of circularly polarized light at the wavelength of 1650 nm, the cross-polarized light deflects to-55.6° at the amorphous phase and +55.6° at the crystalline phase with the signal-to-noise ratio above 10 dB.展开更多
基金supported by the Center for Advanced Meta-Materials(CAMM) funded by the Ministry of Science,ICT and Future Planning as Global Frontier Project(Grant No.CAMM-2014M3A6B3063710)by the National Research Foundation of Korea(NRF)grant funded by the Korea government Ministry of Science and ICT(Grant No.2017R1A4A1015565)
文摘We propose the active metasurface using phase-change material Ge2Sb2Te5(GST), which has two distinct phases so called amorphous and crystalline phases, for an ultrathin light path switching device. By arranging multiple anisotropic GST nanorods, the gradient metasurface, which has opposite directions of phase gradients at the two distinct phases of GST, is demonstrated theoretically and numerically. As a result, in the case of normal incidence of circularly polarized light at the wavelength of 1650 nm, the cross-polarized light deflects to-55.6° at the amorphous phase and +55.6° at the crystalline phase with the signal-to-noise ratio above 10 dB.