The control of light–matter coupling at the single electron level is currently a subject of growing interest for the development of novel quantum devices and for studies and applications of quantum electrodynamics.In...The control of light–matter coupling at the single electron level is currently a subject of growing interest for the development of novel quantum devices and for studies and applications of quantum electrodynamics.In the terahertz(THz)spectral range,this raises the particular and difficult challenge of building electromagnetic resonators that can conciliate low mode volume and high quality factor.Here,we report on hybrid THz cavities based on ultrastrong coupling between a Tamm cavity and an LC circuit metamaterial and show that they can combine high quality factors of up to Q=37 with a deep-subwavelength mode volume of V=3.2×10^(-4)λ^(3).Our theoretical and experimental analysis of the coupled mode properties reveals that,in general,the ultrastrong coupling between a metamaterial and a Fabry–Perot cavity is an effective tool to almost completely suppress radiative losses and,thus,ultimately limit the total losses to the losses in the metallic layer.These Tamm cavity-LC metamaterial coupled resonators open a route toward the development of single photon THz emitters and detectors and to the exploration of ultrastrong THz light–matter coupling with a high degree of coherence in the few to single electron limit.展开更多
The use of fundamental modelocking to generate short terahertz(THz)pulses and THz frequency combs from semiconductor lasers has become a routine affair,using quantum cascade lasers(QCLs)as a gain medium.However,unlike...The use of fundamental modelocking to generate short terahertz(THz)pulses and THz frequency combs from semiconductor lasers has become a routine affair,using quantum cascade lasers(QCLs)as a gain medium.However,unlike classic laser diodes,no demonstrations of harmonic modelocking,active or passive,have been shown in THz QCLs,where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity’s fundamental round-trip frequency.Here,using time-resolved THz techniques,we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency.We demonstrate the generation of the harmonic electrical beatnote within a QCL,its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach.Finally,we show indications of self-starting harmonic emission,i.e.,without external modulation,where the QCL operates exclusively on a harmonic(up to its 15th harmonic)of the round-trip frequency.This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic,as well as photonic,nature of QCLs.These results open up the prospect of passive harmonic modelocking and THz pulse generation,as well as the generation of low-noise microwave generation in the hundreds of GHz region.展开更多
基金Agence Nationale de la Recherche (ANR-19-CE24-0015,ANR-22-CE09-0018)European Research Council (820133)。
文摘The control of light–matter coupling at the single electron level is currently a subject of growing interest for the development of novel quantum devices and for studies and applications of quantum electrodynamics.In the terahertz(THz)spectral range,this raises the particular and difficult challenge of building electromagnetic resonators that can conciliate low mode volume and high quality factor.Here,we report on hybrid THz cavities based on ultrastrong coupling between a Tamm cavity and an LC circuit metamaterial and show that they can combine high quality factors of up to Q=37 with a deep-subwavelength mode volume of V=3.2×10^(-4)λ^(3).Our theoretical and experimental analysis of the coupled mode properties reveals that,in general,the ultrastrong coupling between a metamaterial and a Fabry–Perot cavity is an effective tool to almost completely suppress radiative losses and,thus,ultimately limit the total losses to the losses in the metallic layer.These Tamm cavity-LC metamaterial coupled resonators open a route toward the development of single photon THz emitters and detectors and to the exploration of ultrastrong THz light–matter coupling with a high degree of coherence in the few to single electron limit.
基金funding from the European Union FET-Open grant ULTRAQCL 665158the German Research Foundation(DFG)within the Heisenberg program(JI 115/4-2).
文摘The use of fundamental modelocking to generate short terahertz(THz)pulses and THz frequency combs from semiconductor lasers has become a routine affair,using quantum cascade lasers(QCLs)as a gain medium.However,unlike classic laser diodes,no demonstrations of harmonic modelocking,active or passive,have been shown in THz QCLs,where multiple pulses per round trip are generated when the laser is modulated at the harmonics of the cavity’s fundamental round-trip frequency.Here,using time-resolved THz techniques,we show for the first time harmonic injection and mode-locking in which THz QCLs are modulated at the harmonics of the round-trip frequency.We demonstrate the generation of the harmonic electrical beatnote within a QCL,its injection locking to an active modulation and its direct translation to harmonic pulse generation using the unique ultrafast nature of our approach.Finally,we show indications of self-starting harmonic emission,i.e.,without external modulation,where the QCL operates exclusively on a harmonic(up to its 15th harmonic)of the round-trip frequency.This behaviour is supported by time-resolved simulations of induced gain and loss in the system and shows the importance of the electronic,as well as photonic,nature of QCLs.These results open up the prospect of passive harmonic modelocking and THz pulse generation,as well as the generation of low-noise microwave generation in the hundreds of GHz region.