Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesop...Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesoporous silica nanoparticles(MSN) are associated with lack of most viral vector drawbacks, such as toxicity, immunogenicity, but also generally a low nucleic acid carrying capacity. To overcome this hurdle, we here modified the pore walls of MSNs with surface-hyperbranching polymerized poly(ethyleneimine)(hbPEI), which provides an abundance of amino-groups for loading of a larger amount of siRNA molecules via electrostatic adsorption. After loading, the particles were covered with a second layer of pre-polymerized PEI to provide better protection of siRNA inside the pores, more effective cellular uptake and endosomal escape. To test the transfection efficiency of PEI covered si RNA/MSNs, MDA-MB 231 breast cancer cells stably expressing GFP were used. We demonstrate that PEI-coated si RNA/MSN complexes provide more effective delivery of si RNAs compared to unmodified MSNs. Thus, it can be concluded that appropriately surface-modified MSNs can be considered as prospective vectors for therapeutic siRNA delivery.展开更多
基金supported in part by Russian Science Founda-tion grant 17-15-01230(biological characterization)Academy of Finland project nos.284542,384542(JMR)+2 种基金Jane and Aatos Erkko Foundation(EC)Anna Egorova is supported by President of Russian Federation scholarship(SP-2162.2015.4)Anna Slita was supported by the scholarship within Saint Pe-tersburg State University bilateral exchange program for study abroad
文摘Gene therapy using siRNA molecules is nowadays considered as a promising approach. For successful therapy, development of a stable and reliable vector for siRNA is crucial. Non-viral and non-organic vectors like mesoporous silica nanoparticles(MSN) are associated with lack of most viral vector drawbacks, such as toxicity, immunogenicity, but also generally a low nucleic acid carrying capacity. To overcome this hurdle, we here modified the pore walls of MSNs with surface-hyperbranching polymerized poly(ethyleneimine)(hbPEI), which provides an abundance of amino-groups for loading of a larger amount of siRNA molecules via electrostatic adsorption. After loading, the particles were covered with a second layer of pre-polymerized PEI to provide better protection of siRNA inside the pores, more effective cellular uptake and endosomal escape. To test the transfection efficiency of PEI covered si RNA/MSNs, MDA-MB 231 breast cancer cells stably expressing GFP were used. We demonstrate that PEI-coated si RNA/MSN complexes provide more effective delivery of si RNAs compared to unmodified MSNs. Thus, it can be concluded that appropriately surface-modified MSNs can be considered as prospective vectors for therapeutic siRNA delivery.