期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Susceptibility of dairy cows to subacute ruminal acidosis is reflected in both prepartum and postpartum bacteria as well as odd-and branched-chain fatty acids in feces 被引量:1
1
作者 Hong Yang Stijn Heirbaut +4 位作者 Xiaoping Jing Nympha De Neve Leen Vandaele jeyamalar jeyanathan Veerle Fievez 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期229-243,共15页
Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility ... Background:The transition period is a challenging period for high-producing dairy cattle.Cows in early lactation are considered as a group at risk of subacute ruminal acidosis(SARA).Variability in SARA susceptibility in early lactation is hypothesized to be reflected in fecal characteristics such as fecal pH,dry matter content,volatile and odd-and branched-chain fatty acids(VFA and OBCFA,respectively),as well as fecal microbiota.This was investigated with 38 periparturient dairy cows,which were classified into four groups differing in median and mean time of reticular pH below 6 as well as area under the curve of pH below 6.Furthermore,we investigated whether fecal differences were already obvious during a period prior to the SARA risk(prepartum).Results:Variation in reticular pH during a 3-week postpartum period was not associated with differences in fecal pH and VFA concentration.In the postpartum period,the copy number of fecal bacteria and methanogens of unsusceptible(UN)cows was higher than moderately susceptible(MS)or susceptible(SU)cows,while the genera Ruminococcus and Prevotellacea_UCG-001 were proportionally less abundant in UN compared with SU cows.Nevertheless,only a minor reduction was observed in iso-BCFA proportions in fecal fatty acids of SU cows,particularly iso-C15:0and iso-C16:0,compared with UN cows.Consistent with the bacterial changes postpartum,the lower abundance of Ruminococcus was already observed in the prepartum fecal bacterial communities of UN cows,whereas Lachnospiraceae_UCG-001 was increased.Nevertheless,no differences were observed in the prepartum fecal VFA or OBCFA profiles among the groups.Prepartum fecal bacterial communities of cows were clustered into two distinct clusters with 70%of the SU cows belonging to cluster 1,in which they represented 60%of the animals.Conclusions:Inter-animal variation in postpartum SARA susceptibility was reflected in post-and prepartum fecal bacterial communities.Differences in prepartum fecal bacterial communities could alert for susceptibility to develop SARA postpartum.Our results generated knowledge on the association between fecal bacteria and SARA development which could be further explored in a prevention strategy. 展开更多
关键词 Fecal bacterial community Fecal odd-and branched-chain fatty acids Inter-animal variation Subacute ruminal acidosis
下载PDF
Bacterial direct-fed microbials fail to reduce methane emissions in primiparous lactating dairy cows
2
作者 jeyamalar jeyanathan Cecile Martin +3 位作者 Maguy Eugene Anne Ferlay Milka Popova Diego P.Morgavi 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2019年第3期802-810,共9页
Direct-fed microbials(DFM) are considered as a promising technique to improve animal productivity without affecting animal health or harming the environment.The potential of three bacterial DFM to reduce methane(CH4)e... Direct-fed microbials(DFM) are considered as a promising technique to improve animal productivity without affecting animal health or harming the environment.The potential of three bacterial DFM to reduce methane(CH4)emissions,modulate ruminal fermentation,milk production and composition of primiparous dairy cows was examined in this study.As previous reports have shown that DFM respond differently to different diets,two contrasting diets were used in this study.Eight lactating primiparous cows were randomly divided into two groups that were fed a corn silage-based,high-starch diet(HSD) or a grass silage-based,high-fiber diet(HFD).Cows in each dietary group were randomly assigned to four treatments in a 4 × 4 Latin square design.The bacterial DFM used were selected for their proven CH4-reducing effect in vitro.Treatments included control(without DFM) and 3 DFM treatments: Propionibacterium freudenreichii 53-W(2.9 × 10^10 colony forming units(CFU)/cow per day),Lactobacillus pentosus D31(3.6 × 10^11 CFU/cow per day) and Lactobacillus bulgaricus D1(4.6 × 10^10 CFU/cow per day).Each experimental period included 4 weeks of treatment and 1 week of wash-out,with measures performed in the fourth week of the treatment period.Enteric CH4 emissions were measured during 3 consecutive days using respiration chambers.Rumen samples were collected for ruminal fermentation parameters and quantitative microbial analyses.Milk samples were collected for composition analysis.Body weight of cows were recorded at the end of each treatment period.Irrespective of diet,no mitigating effect of DFM was observed on CH4 emissions in dairy cows.In contrast,Propionibacterium increased CH4 intensity by 27%(g CH4/kg milk) in cows fed HSD.There was no effect of DFM on other fermentation parameters and on bacterial,archaeal and protozoal numbers.Similarly,the effect of DFM on milk fatty acid composition was negligible.Propionibacterium and L.pentosus DFM tended to increase body weight gain with HSD.We conclude that,contrary to the effect previously observed in vitro,bacterial DFM Propionibacterium freudenreichii 53-W,Lactobacillus pentosus D31 and Lactobacillus bulgaricus D1 did not alter ruminal fermentation and failed to reduce CH4 emissions in lactating primiparous cows fed high-starch or high-fiber diets. 展开更多
关键词 BACTERIAL direct-fed microbial DAIRY COW Methane MILK FATTY acid
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部