The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves co...The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves controlling the gecko's foot movements was determined; (2) the relationship between the limb nerves of the gecko and its foot motor patterns was studied; (3) the afferent impulses of the nerves evoked by rubbing the gecko's toes and palm were recorded; (4) copying the natural patterns of movement of the gecko's foot (abduction, adduction, flexion, and revolution) and its limb nerve modulation and control mechanism, the nerves were stimulated under computer control, and the results recorded by CCD. Results suggest that gecko's foot movements can be successfully controlled by artificial electrical signals.展开更多
基金This work was funded by Hi-tech Research and Development Program of China(2002AA 423230)National Natural Science Foundation of China(90205014,30400086).
文摘The modulation and control of gecko's foot movements were studied electrophysiologically in order to design the motor control system of a gecko-mimic robot. In this study (1) the anatomy of the peripheral nerves controlling the gecko's foot movements was determined; (2) the relationship between the limb nerves of the gecko and its foot motor patterns was studied; (3) the afferent impulses of the nerves evoked by rubbing the gecko's toes and palm were recorded; (4) copying the natural patterns of movement of the gecko's foot (abduction, adduction, flexion, and revolution) and its limb nerve modulation and control mechanism, the nerves were stimulated under computer control, and the results recorded by CCD. Results suggest that gecko's foot movements can be successfully controlled by artificial electrical signals.