A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamb...A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples.Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices.This paper presents a comprehensive survey of recent advances in nanorobotic manipulation,including the development of nanomanipulation platforms,tools,changeable toolboxes,sensing units,control strategies,electron beam-induced deposition approaches,automation techniques,and nanomanipulation-enabled applications and discoveries.The limitations of the existing technologies and prospects for new technologies are also discussed.展开更多
Nanomanipulation under scanning electron microscopy(SEM)enables direct interactions of a tool with a sample.We recently developed a nanomanipulation technique for the extraction and identification of DNA contained wit...Nanomanipulation under scanning electron microscopy(SEM)enables direct interactions of a tool with a sample.We recently developed a nanomanipulation technique for the extraction and identification of DNA contained within sub-nuclear locations of a single cell nucleus.In nanomanipulation of sub-cellular structures,a key step is to identify targets of interest through correlating fluorescence and SEM images.The DNA extraction task must be conducted with low accelerating voltages resulting in low imaging resolutions.This is imposed by the necessity of preserving the biochemical integrity of the sample.Such poor imaging conditions make the identification of nanometer-sized fiducial marks difficult.This paper presents an affine scale-invariant feature transform(ASIFT)based method for correlating SEM images and fluorescence microscopy images.The performance of the image correlation approach under different noise levels and imaging magnifications was quantitatively evaluated.The optimal mean absolute error(MAE)of correlation results is 68634 nm under standard conditions.Compared with manual correlation by skilled operators,the automated correlation approach demonstrates a speed that is higher by an order of magnitude.With the SEM-fluorescence image correlation approach,targeted DNA was successfully extracted via nanomanipulation under SEM conditions.展开更多
基金This study was supported by the Natural Sciences and Engineering Research Council of Canada,the Canada Research Chairs Program,and the Ontario Ministry of Research and Innovation via an ORF-RE grant.
文摘A scanning electron microscope(SEM)provides real-time imaging with nanometer resolution and a large scanning area,which enables the development and integration of robotic nanomanipulation systems inside a vacuum chamber to realize simultaneous imaging and direct interactions with nanoscaled samples.Emerging techniques for nanorobotic manipulation during SEM imaging enable the characterization of nanomaterials and nanostructures and the prototyping/assembly of nanodevices.This paper presents a comprehensive survey of recent advances in nanorobotic manipulation,including the development of nanomanipulation platforms,tools,changeable toolboxes,sensing units,control strategies,electron beam-induced deposition approaches,automation techniques,and nanomanipulation-enabled applications and discoveries.The limitations of the existing technologies and prospects for new technologies are also discussed.
基金This work was supported by Canadian Institutes of Health Research via a Catalyst Grant,the Canada Research Chairs Program,the Ontario Research Funds--Research Excellence Program and the Natural Sciences and Engineering Research Council of Canada via a Strategic Projects Grant.
文摘Nanomanipulation under scanning electron microscopy(SEM)enables direct interactions of a tool with a sample.We recently developed a nanomanipulation technique for the extraction and identification of DNA contained within sub-nuclear locations of a single cell nucleus.In nanomanipulation of sub-cellular structures,a key step is to identify targets of interest through correlating fluorescence and SEM images.The DNA extraction task must be conducted with low accelerating voltages resulting in low imaging resolutions.This is imposed by the necessity of preserving the biochemical integrity of the sample.Such poor imaging conditions make the identification of nanometer-sized fiducial marks difficult.This paper presents an affine scale-invariant feature transform(ASIFT)based method for correlating SEM images and fluorescence microscopy images.The performance of the image correlation approach under different noise levels and imaging magnifications was quantitatively evaluated.The optimal mean absolute error(MAE)of correlation results is 68634 nm under standard conditions.Compared with manual correlation by skilled operators,the automated correlation approach demonstrates a speed that is higher by an order of magnitude.With the SEM-fluorescence image correlation approach,targeted DNA was successfully extracted via nanomanipulation under SEM conditions.