Using both numerical and experimental methods, we studied the effect of coil configuration of pulsed magneto-oscillation(PMO) on distribution of electromagnetic field, flow field and solidification structure with th...Using both numerical and experimental methods, we studied the effect of coil configuration of pulsed magneto-oscillation(PMO) on distribution of electromagnetic field, flow field and solidification structure with the same pulse currentparameters in A1 ingots. We designed and constructed three types of coils: surface pulsed magneto-oscillation, hot-toppulsed magneto-oscillation (HPMO) and combined pulsed magneto-oscillation (CPMO). PMO treatment refined thesolidification structure in all the ingots. The configuration of the PMO, however, introduced differences in magnetic fieldintensity, electromagnetic force, Joule heat, flow field, equiaxed grain zone, grain size and growth direction of columnargrains. The largest equiaxed grain zone was found in CPMO treated ingot, and the smallest grain size was found in bothHPM0 and CPMO treated ingots. Numerical simulation indicated that difference in electromagnetic field and flow fieldresulted in differences in solidification structure. HPMO is more advantageous over others for large ingot production.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51704210)the National Key Research and Development Program of China(No.2017YFB0701802)the Natural Science Foundation of Hebei Province(No.E2017105016)
文摘Using both numerical and experimental methods, we studied the effect of coil configuration of pulsed magneto-oscillation(PMO) on distribution of electromagnetic field, flow field and solidification structure with the same pulse currentparameters in A1 ingots. We designed and constructed three types of coils: surface pulsed magneto-oscillation, hot-toppulsed magneto-oscillation (HPMO) and combined pulsed magneto-oscillation (CPMO). PMO treatment refined thesolidification structure in all the ingots. The configuration of the PMO, however, introduced differences in magnetic fieldintensity, electromagnetic force, Joule heat, flow field, equiaxed grain zone, grain size and growth direction of columnargrains. The largest equiaxed grain zone was found in CPMO treated ingot, and the smallest grain size was found in bothHPM0 and CPMO treated ingots. Numerical simulation indicated that difference in electromagnetic field and flow fieldresulted in differences in solidification structure. HPMO is more advantageous over others for large ingot production.