期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Rapid crystallization-driven high-efficiency phase-pure deep-blue Ruddlesden–Popper perovskite light-emitting diodes 被引量:1
1
作者 Gyumin Jang Hyowon Han +8 位作者 Sunihl Ma Junwoo Lee Chan Uk Lee Wooyong Jeong Jaehyun Son Dongki Cho ji-hee kim Cheolmin Park Jooho Moon 《Advanced Photonics》 SCIE EI CAS CSCD 2023年第1期8-18,共11页
Perovskite light-emitting diodes(PeLEDs)are considered as promising candidates for nextgeneration solution-processed full-color displays.However,the external quantum efficiencies(EQEs)and operational stabilities of de... Perovskite light-emitting diodes(PeLEDs)are considered as promising candidates for nextgeneration solution-processed full-color displays.However,the external quantum efficiencies(EQEs)and operational stabilities of deep-blue(<460 nm)PeLEDs still lag far behind their red and green counterparts.Herein,a rapid crystallization method based on hot-antisolvent bathing is proposed for realization of deep-blue PeLEDs.By promoting immediate removal of the precursor solvent from the wet perovskite films,development of the quasi-two-dimensional(2D)Ruddlesden–Popper perovskite(2D-RPP)crystals with n values>3 is hampered completely,so that phase-pure 2D-RPP films with bandgaps suitable for deep-blue PeLEDs can be obtained successfully.The uniquely developed rapid crystallization method also enables formation of randomly oriented 2D-RPP crystals,thereby improving the transfer and transport kinetics of the charge carriers.Thus,high-performance deep-blue PeLEDs emitting at 437 nm with a peak EQE of 0.63%are successfully demonstrated.The color coordinates are confirmed to be(0.165,0.044),which match well with the Rec.2020 standard blue gamut and have excellent spectral stability. 展开更多
关键词 Ruddlesden–Popper perovskite rapid crystallization deep-blue light-emitting diodes phase purity randomly oriented crystals
原文传递
Engineering electrode interfaces for telecom-band photodetection in MoS_(2)/Au heterostructures via sub-band light absorption
2
作者 Chengyun Hong Saejin Oh +7 位作者 Vu Khac Dat Sangyeon Pak SeungNam Cha Kyung-Hun Ko Gyung-Min Choi Tony Low Sang-Hyun Oh ji-hee kim 《Light(Science & Applications)》 SCIE EI CSCD 2023年第12期2677-2687,共11页
Transition metal dichalcogenide(TMD)layered semiconductors possess immense potential in the design of photonic,electronic,optoelectronic,and sensor devices.However,the sub-bandgap light absorption of TMD in the range ... Transition metal dichalcogenide(TMD)layered semiconductors possess immense potential in the design of photonic,electronic,optoelectronic,and sensor devices.However,the sub-bandgap light absorption of TMD in the range from near-infrared(NIR)to short-wavelength infrared(SWIR)is insufficient for applications beyond the bandgap limit.Herein,we report that the sub-bandgap photoresponse of MoS_(2)/Au heterostructures can be robustly modulated by the electrode fabrication method employed.We observed up to 60%sub-bandgap absorption in the MoS_(2)/Au heterostructure,which includes the hybridized interface,where the Au layer was applied via sputter deposition.The greatly enhanced absorption of sub-bandgap light is due to the planar cavity formed by MoS_(2) and Au;as such,the absorption spectrum can be tuned by altering the thickness of the MoS_(2) layer.Photocurrent in the SWIR wavelength range increases due to increased absorption,which means that broad wavelength detection from visible toward SWIR is possible.We also achieved rapid photoresponse(~150μs)and high responsivity(17 mA W^(-1))at an excitation wavelength of 1550nm.Our findings demonstrate a facile method for optical property modulation using metal electrode engineering and for realizing SWIR photodetection in wide-bandgap 2D materials. 展开更多
关键词 MoS_(2) ABSORPTION ELECTRODE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部